Точка N лежит на отрезке MK, MK: NK = 6: 5. Точка C лежит на плоскости a. Сечение NL, параллельное плоскости а, равно 10 см. Прямая ML пересекает плоскость a в точке S. Следуя диаграмме, найдите длину отрезка KЅ.
В условии допущена описка.Площадь измеряется в кавдратных единицах, следовательно, площадь грани тетраэдра равна
S = 16√3 см².
Тетраэдр называется правильным, если все его грани - равносторонние треугольники. Тогда сторону тетраэдра найдем из формулы площади правильного треугольника:
S = (√3/4)*a², где а - сторона треугольника.
а² = 4*S/√3 = 4*16√3/√3 = 64 см² => a = 8см.
Точки T,K, и Е - середины ребер DB, DC и AC соответственно, следовательно, отрезки ТК и КЕ - средние линии треугольников - граней тетраэдра BDC и СDA и равны половинам сторон ВС и AD.
Построим сечение тетраэдра плоскостью ТКЕ. Плоскость BDC пересекается плоскостью TKE по линии ТК, параллельной прямой ВС. Но прямая ВС принадлежит и плоскости АВС. Следовательно, плоскость АВС пересечется плоскостью ТКЕ, проходящей через точку Е по прямой ЕМ, параллельной прямой ВС, а отрезок ЕМ является средней линией треугольника АВС. ЕМ = 4см. Соединив точки Т и М (середины сторон АВ и BD), получим сечение тетраэдра плоскостью ТКЕ - четырехугольник ТКЕМ, все стороны которого равны между собой и равны 4 см.
см³.
Объяснение:Обозначим данную пирамиду буквами
см.
Проведём высоту пирамиды SO.
Начертим около этой пирамиды конус.
Так как конус описан около данной пирамиды, то высота конуса совпадает с высотой данной пирамиды.
=======================================================
Так как данная пирамида - правильная, треугольная ⇒ основание данной пирамиды - правильный треугольник.
см.
Проведём высоту в
- прямоугольный, так как - высота пирамиды.
- прямоугольный, так как - высота .
Так как - равносторонний ⇒ - высота, медиана и биссектриса
см, так как - медиана.
Найдём по теореме Пифагора .
см.
Точка - пересечение медиан и делит их в отношении , считая от вершины.
см
см.
Также - радиус описанной около окружности.
Рассмотрим
Если угол в прямоугольном треугольнике равен , то напротив лежащий катет равен половине гипотенузы.
Составим уравнение:
Пусть , тогда .
И по теореме Пифагора
конуса = см³.
Ptkem = 16 см.
объяснение:
В условии допущена описка.Площадь измеряется в кавдратных единицах, следовательно, площадь грани тетраэдра равна
S = 16√3 см².
Тетраэдр называется правильным, если все его грани - равносторонние треугольники. Тогда сторону тетраэдра найдем из формулы площади правильного треугольника:
S = (√3/4)*a², где а - сторона треугольника.
а² = 4*S/√3 = 4*16√3/√3 = 64 см² => a = 8см.
Точки T,K, и Е - середины ребер DB, DC и AC соответственно, следовательно, отрезки ТК и КЕ - средние линии треугольников - граней тетраэдра BDC и СDA и равны половинам сторон ВС и AD.
Построим сечение тетраэдра плоскостью ТКЕ. Плоскость BDC пересекается плоскостью TKE по линии ТК, параллельной прямой ВС. Но прямая ВС принадлежит и плоскости АВС. Следовательно, плоскость АВС пересечется плоскостью ТКЕ, проходящей через точку Е по прямой ЕМ, параллельной прямой ВС, а отрезок ЕМ является средней линией треугольника АВС. ЕМ = 4см. Соединив точки Т и М (середины сторон АВ и BD), получим сечение тетраэдра плоскостью ТКЕ - четырехугольник ТКЕМ, все стороны которого равны между собой и равны 4 см.
Периметр сечения Ptkem = 4*4 = 16 см.