По теореме: Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на ее внешнюю часть равно произведению другой секущей на ее внешнюю часть. (как следствие теоремы о касательной и секущей из одной точки).
Для меньшей окружности
СА•СК=СВ•СР, откуда
СА:СВ=СК:СР
Для большей окружности
СЕ•СВ=СМ•СА, откуда
СМ:СЕ=СА:СВ. ⇒
СК:СР=СМ:СЕ ⇒СК:СМ=СР:СЕ
Второй признак подобия треугольников. Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то треугольники подобны.
Перевод: Хорда круга стягивает дугу 60 градусов. Найдите длину этой хорды, если диаметр окружности равен 22 см.
Решение. Пусть хорда AB стягивает хорду 60°. Проведём из конца хорды к центру O круга отрезки AO и BO (см. рисунок). Так как проведённые отрезки равны радиусу, то
r = AO = BO = d : 2 =22 см : 2 = 11 см.
Угол α между радиусами AO и BO центральный, тогда величина угла α равна длине дуги АВ, то есть α = 60°.
Далее, длину хорды можно найти различными
Радиусы AO и BO и хорда AB образуют треугольник ABO с углом при вершине в 60°. Так как AO=BO, то треугольник ABO равнобедренный. Тогда углы при основании AB треугольника равны:
∠A=∠B=(180°-α):2=(180°-60°):2=120°:2=60°.
Значит все углы треугольника ABO равны, откуда следует, что треугольник ABO равносторонний. Отсюда
AB=AO=BO= 11 см.
Радиус r = 11 см. Применим формулу нахождения длина хорды через центральный угол и радиус:
По теореме: Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на ее внешнюю часть равно произведению другой секущей на ее внешнюю часть. (как следствие теоремы о касательной и секущей из одной точки).
Для меньшей окружности
СА•СК=СВ•СР, откуда
СА:СВ=СК:СР
Для большей окружности
СЕ•СВ=СМ•СА, откуда
СМ:СЕ=СА:СВ. ⇒
СК:СР=СМ:СЕ ⇒СК:СМ=СР:СЕ
Второй признак подобия треугольников. Если две стороны одного треугольника соответственно пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то треугольники подобны.
Из подобия ∆ СКР и Δ СМЕ следует отношение
СК:СМ=РК:ЕМ
СК:12=6:9⇒ СК=8 см.
и
СР:СЕ=КР:МЕ
⇒ СР=10 см
11 см
Объяснение:
Перевод: Хорда круга стягивает дугу 60 градусов. Найдите длину этой хорды, если диаметр окружности равен 22 см.
Решение. Пусть хорда AB стягивает хорду 60°. Проведём из конца хорды к центру O круга отрезки AO и BO (см. рисунок). Так как проведённые отрезки равны радиусу, то
r = AO = BO = d : 2 =22 см : 2 = 11 см.
Угол α между радиусами AO и BO центральный, тогда величина угла α равна длине дуги АВ, то есть α = 60°.
Далее, длину хорды можно найти различными
Радиусы AO и BO и хорда AB образуют треугольник ABO с углом при вершине в 60°. Так как AO=BO, то треугольник ABO равнобедренный. Тогда углы при основании AB треугольника равны:
∠A=∠B=(180°-α):2=(180°-60°):2=120°:2=60°.
Значит все углы треугольника ABO равны, откуда следует, что треугольник ABO равносторонний. Отсюда
AB=AO=BO= 11 см.
Радиус r = 11 см. Применим формулу нахождения длина хорды через центральный угол и радиус:
AB=2·r·sin(α/2)=2·11 см·(1/2)=11 см.