Ортоцентр H треугольника ABC отразили относительно сторон и получили точки A₁, B₁ и C₁. Найдите углы треугольника A′B′C′, если ∠A=50∘, ∠B=75∘.
Объяснение:
По свойству ортоцентра : "Точка, симметричная ортоцентру относительно стороны треугольника, лежит на описанной около него окружности". Значит все точки А, В, С,A₁, B₁ , C₁-лежат на окружности.
1)ΔАВМ -прямоугольный ,∠А=50°⇒ ∠АВМ=90°-50°=40° . Значит ∠МВС=75°-40°=35° .Поэтому дуги ∪ АВ₁=80° и ∪ В₁С=70° по т. о вписанном угле.
2)ΔАСР -прямоугольный ,∠А=50°⇒ ∠АСР=90°-50°=40° . Значит ∠РСВ=55°-40°=15° .Поэтому дуги ∪ АС₁=80° и ∪ С₁В=30° по т. о вписанном угле.
3)ΔАВК -прямоугольный ,∠В=75°⇒ ∠ВАК=90°-75°=15° . Значит ∠САК=50°-15°=35° .Поэтому дуги ∪ СА₁=70° и ∪ А₁В=30° по т. о вписанном угле.
)ΔА₁В₁С₁ , по т. о вписанном угле : ∠А₁=1/2*(80°+80)°=80° ,∠В₁=1/2*(30°+30)°=30° , ∠С₁=1/2*(70°+70)°=70°.
Возможны два случая: 1. Точки А и D расположены по одну сторону от прямой ВС. Тогда ∠АВС и ∠BCD - внутренние односторонние, их сумма равна 180°. А если сумма внутренних односторонних углов, образованных при пересечении двух прямых секущей, равна 180°, то эти прямые параллельны. Поэтому АВ║CD.
2. Точки А и D расположены по разные стороны от прямой ВС. Тогда ∠АВС и ∠BCD - внутренние накрест лежащие, и они не равны. А только если накрест лежащие углы, образованные при пересечении двух прямых секущей, равны, то прямые параллельны, следовательно, в этом случае АВ и CD не параллельны, то есть они пересекаются.
Ортоцентр H треугольника ABC отразили относительно сторон и получили точки A₁, B₁ и C₁. Найдите углы треугольника A′B′C′, если ∠A=50∘, ∠B=75∘.
Объяснение:
По свойству ортоцентра : "Точка, симметричная ортоцентру относительно стороны треугольника, лежит на описанной около него окружности". Значит все точки А, В, С,A₁, B₁ , C₁-лежат на окружности.
1)ΔАВМ -прямоугольный ,∠А=50°⇒ ∠АВМ=90°-50°=40° . Значит ∠МВС=75°-40°=35° .Поэтому дуги ∪ АВ₁=80° и ∪ В₁С=70° по т. о вписанном угле.
2)ΔАСР -прямоугольный ,∠А=50°⇒ ∠АСР=90°-50°=40° . Значит ∠РСВ=55°-40°=15° .Поэтому дуги ∪ АС₁=80° и ∪ С₁В=30° по т. о вписанном угле.
3)ΔАВК -прямоугольный ,∠В=75°⇒ ∠ВАК=90°-75°=15° . Значит ∠САК=50°-15°=35° .Поэтому дуги ∪ СА₁=70° и ∪ А₁В=30° по т. о вписанном угле.
)ΔА₁В₁С₁ , по т. о вписанном угле : ∠А₁=1/2*(80°+80)°=80° ,∠В₁=1/2*(30°+30)°=30° , ∠С₁=1/2*(70°+70)°=70°.
1. Точки А и D расположены по одну сторону от прямой ВС.
Тогда ∠АВС и ∠BCD - внутренние односторонние, их сумма равна 180°.
А если сумма внутренних односторонних углов, образованных при пересечении двух прямых секущей, равна 180°, то эти прямые параллельны.
Поэтому АВ║CD.
2. Точки А и D расположены по разные стороны от прямой ВС.
Тогда ∠АВС и ∠BCD - внутренние накрест лежащие, и они не равны.
А только если накрест лежащие углы, образованные при пересечении двух прямых секущей, равны, то прямые параллельны, следовательно, в этом случае АВ и CD не параллельны, то есть они пересекаются.