если необходимо найти приблизительное значение синуса или косинуса другого угла или вычислить угол по найденному синусу или косинусу, то используется таблица или калькулятор.
Задача решается двумя Графически и алгебраически. приложение №1): Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см. Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см. Радиус 5/2=2,5 см.
приложение №2): Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника. Радиус описанной окружности - R=a/2sinα , где а - сторона треугольника, α - противолежащий угол. Рассматриваем треугольник НВС, где Н точка пресечения диагоналей. Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β). R=СД/2sinβ=2/sinβ; R=АВ/2sin(90-β)=3/2cosβ. Делим одно выражение на другое. 3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3 R=2/sin(atgβ)=2.499999=2.5 см.
ответ:
якласс лого
1. теорема синусов, теорема косинусов
теория:
теорема синусов
теорему пифагора и тригонометрические функции острого угла можно использовать для вычисления элементов только в прямоугольном треугольнике.
для нахождения элементов в произвольном треугольнике используется теорема синусов или теорема косинусов.
4cepure.jpg
теорема синусов
стороны треугольника пропорциональны синусам противолежащих углов:
asina=bsinb=csinc
(в решении одновременно пишутся две части, они образуют пропорцию).
теорема синусов используется для вычисления:
неизвестных сторон треугольника, если даны два угла и одна сторона;
неизвестных углов треугольника, если даны две стороны и один прилежащий угол.
так как один из углов треугольника может быть тупым, значение синуса тупого угла находится по формуле sin(180°−α)=sinα .
наиболее часто используемые тупые углы:
sin120°=sin(180°−60°)=sin60°=3√2; sin150°=sin(180°−30°)=sin30°=12; sin135°=sin(180°−45°)=sin45°=2√2.
радиус описанной окружности
треуг2.jpg
asina=bsinb=csinc=2r , где r — радиус описанной окружности.
выразив радиус, получаем r=a2sina , или r=b2sinb , или r=c2sinc .
теорема косинусов
для вычисления элементов прямоугольного треугольника достаточно 2 данных величин (две стороны или сторона и угол).
для вычисления элементов произвольного треугольника необходимо хотя бы 3 данных величины.
4cepure.jpg
теорема косинусов
квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
a2=b2+c2−2⋅b⋅c⋅cosa .
также теорема исполняется для любой стороны треугольника:
b2=a2+c2−2⋅a⋅c⋅cosb ;
c2=a2+b2−2⋅a⋅b⋅cosc .
теорема косинусов используется для вычисления:
неизвестной стороны треугольника, если даны две стороны и угол между ними;
вычисления косинуса неизвестного угла треугольника, если даны все стороны треугольника.
значение косинуса тупого угла находится по формуле cos(180°−α)=−cosα .
наиболее часто используемые тупые углы:
cos120°=cos(180°−60°)=−cos60°=−12; cos150°=cos(180°−30°)=−cos30°=−3√2; cos135°=cos(180°−45°)=−cos45°=−2√2.
если необходимо найти приблизительное значение синуса или косинуса другого угла или вычислить угол по найденному синусу или косинусу, то используется таблица или калькулятор.
вернуться в тему
следующее
copyright © 2019 якласс
контакты пользовательское соглашение
приложение №1):
Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см.
Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см.
Радиус 5/2=2,5 см.
приложение №2):
Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника.
Радиус описанной окружности -
R=a/2sinα , где а - сторона треугольника, α - противолежащий угол.
Рассматриваем треугольник НВС, где Н точка пресечения диагоналей.
Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β).
R=СД/2sinβ=2/sinβ;
R=АВ/2sin(90-β)=3/2cosβ.
Делим одно выражение на другое.
3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3
R=2/sin(atgβ)=2.499999=2.5 см.