Cечение, проходящее через вершины А,С и D1 призмы пройдет и через вершину F1, так как плоскость, пересекающая две параллельные плоскости (плоскости оснований), пересекает их по параллельным прямым, то есть по прямым АС и D1F1. В сечении имеем прямоугольник со сторонами АС и СD1 (так как грани АА1F1F и CC1D1D параллельны между собой и перпендикулярны плоскостям оснований и, следовательно, углы сечения равны 90⁰). Причем отрезок СD1 (гипотенуза прямоугольного треугольника) по Пифагору равна 2√2. Половину стороны АС найдем из прямоугольного треугольника АВН, в котором <ABH=60°, а <BAH=30° (так как <АВС - внутренний угол правильного шестиугольника и равен 120°). 0,5*АС=√(4-1)=√3. АС=2√3. Площадь сечения равна 2√2*2√3=4√6. ответ: S=4√6.
Объяснение:
A
/|\
/ | \
/ | \
/|\
C D B
А) отрезки BD и CD, если AB = 10 см, AC = 12 см, ВС= = 11 см;
1) это по правилу (не помню как называлось)
BC=CD+BD=11
Легче будет представить, если CD=x, BD=y
1)
2)x+y=11
1)
2)x=11-y
подставим
10(11-y)=12y
110-10y=12y
22y=110
y=
x=11-5=6
СD=6 см
BD=5 см
2)сторону AC, если BD: DC = 4:9, AB = 16 см;
тоже используем эту схему
Пусть BD=4x, DC=9x
Тогда из того правила
см
3) стороны AB и AC, если AB + AC = 32 см, BD: DC = = 5: 3.
Пусть AB=x, AC=y, тогда
AB=20 см
AC= 12 см
0,5*АС=√(4-1)=√3. АС=2√3.
Площадь сечения равна 2√2*2√3=4√6.
ответ: S=4√6.