Точка o — центр кола, вписаного в трапецію abcd, bc ad, ab ^ ad, cd = 12 см, ∠adc = 45°. відрізок mo — перпендикуляр до площини трапеції. точка m віддалена від площини трапеції на 6 2 см. знайдіть відстань від точки m до сторін трапеції
ВН = СК как расстояния между параллельными прямыми, значит
ВНКС - прямоугольник, ⇒
НК = ВС = 6 см.
ΔАВН = ΔDCK по гипотенузе и острому углу (АВ = CD так как трапеция равнобедренная, ∠BAH = ∠CDK как углы при основании равнобедренной трапеции), ⇒ АН = KD.
Если гипотенуза и острый угол одного треугольника соответственно равны гипотенузе и острому углу другого треугольника, то такие прямоугольные треугольники равны. Чтобы доказать эту теорему, построим два прямоугольных гольника ABC и А'В'С', у которых углы А и А' равны, гипотенузы АВ и А'В' также равны, а углы С и С' — прямые Наложим треугольник А'В'С' на треугольник ABC так, чтобы вершина А' совпала с вершиной А, гипотенуза А'В' — с равной гипотенузой АВ. Тогда вследствие равенства углов A и А' катет А'С' пойдёт по катету АС; катет В'С' совместится с катетом ВС: оба они перпендикуляры, проведённые к одной прямой АС из одной точки В (§ 26,следствие 3). Значит, вершины С и С' совместятся. Треугольник ABC совместился с треугольником А'В'С'. Следовательно, /\ АВС = /\ А'В'С'. Эта теорема даёт 3-й признак равенства прямоугольных треугольников (по гипотенузе и острому углу).
1. По теореме Пифагора:
АВ² = АС² + ВС²
АВ² = 6² + 8² = 36 + 64 = 100
АВ = 10 см
2. Проведем высоты трапеции ВН и СК.
ВН ║ СК как перпендикуляры к одной прямой,
ВН = СК как расстояния между параллельными прямыми, значит
ВНКС - прямоугольник, ⇒
НК = ВС = 6 см.
ΔАВН = ΔDCK по гипотенузе и острому углу (АВ = CD так как трапеция равнобедренная, ∠BAH = ∠CDK как углы при основании равнобедренной трапеции), ⇒ АН = KD.
АН = KD = (AD - HK)/2 = (14 - 6)/2 = 8/2 = 4 см
ΔАВН: ∠АНВ = 90°, по теореме Пифагора:
AB² = ВН² + АН²
ВН² = АВ² - АН²
ВН² = 5² - 4² = 25 - 16 = 9
ВН = 3 см
Sabcd = (AD + BC)/2 · BH
Sabcd = (14 + 6)/2 · 3 = 10 · 3 = 30 см²
Чтобы доказать эту теорему, построим два прямоугольных гольника ABC и А'В'С', у которых углы А и А' равны, гипотенузы АВ и А'В' также равны, а углы С и С' — прямые Наложим треугольник А'В'С' на треугольник ABC так, чтобы вершина А' совпала с вершиной А, гипотенуза А'В' — с равной гипотенузой АВ. Тогда вследствие равенства углов A и А' катет А'С' пойдёт по катету АС; катет В'С' совместится с катетом ВС: оба они перпендикуляры, проведённые к одной прямой АС из одной точки В (§ 26,следствие 3). Значит, вершины С и С' совместятся. Треугольник ABC совместился с треугольником А'В'С'.
Следовательно, /\ АВС = /\ А'В'С'. Эта теорема даёт 3-й признак равенства прямоугольных треугольников (по гипотенузе и острому углу).