В равнобедренном треугольнике медиана, проведённая к основанию, является биссектрисой и высотой . Дано: DABC - равнобедренный; AB - основание. CD - медиана .
Док-ть: CD - высота и биссектриса .
Доказательство:
CA=CD - по условию РA= РB - по свойству равнобедренного треугольника AD=DB т. к. CD - медиана , ЮDCAD=DCBD (по 1-ому признаку равенства треугольников) ЮРACD= РBCD, РADC= РBDC РACD=РBCD Ю CD - биссектриса РACD и РBCD - смежные и равны Ю РACD и РBCD - прямые Ю CD - высота треугольника. ещё доказательство: http://oldskola1.narod.ru/Nikitin/0018.htm
2) Так как АD -биссектриса,то ∠ CAD=∠BAD= 49° Значит ∠A= 98° ∠B=180°-∠A-∠С=180°-98°-71°=10° В треугольнке ABD
∠ADB=180°-∠BAD-∠B=180°-49°-10°=121°
3)В треугольнике АВС АС=ВС, значит треугольник равнобедренный и углы при основании равны,∠ABС= ∠ВAС Так как ∠ ВАD= 35° и сумма острых углов прямоугольного треугольника равна 90 °, то ∠ АВD= 90°- 35°=55° ∠А=∠В=55° ∠С=180°-∠А-∠В=180°-55°-55°=70°
4) Сумма углов четырехугольника АЕОD равна 360° Два угла по 90° (угол Е и угол D) и один 75°( угол А) Значит ∠EOD=360°-90°-90°-75°=105°
Дано:
DABC - равнобедренный;
AB - основание. CD - медиана .
Док-ть:
CD - высота и биссектриса .
Доказательство:
CA=CD - по условию
РA= РB - по свойству равнобедренного треугольника
AD=DB т. к. CD - медиана ,
ЮDCAD=DCBD (по 1-ому признаку равенства треугольников)
ЮРACD= РBCD, РADC= РBDC
РACD=РBCD Ю CD - биссектриса
РACD и РBCD - смежные и равны
Ю РACD и РBCD - прямые Ю CD - высота треугольника. ещё доказательство: http://oldskola1.narod.ru/Nikitin/0018.htm
Значит ∠A= 20°
∠B=180°-∠A-∠С=180°-20°-81°=79°
2) Так как АD -биссектриса,то ∠ CAD=∠BAD= 49°
Значит ∠A= 98°
∠B=180°-∠A-∠С=180°-98°-71°=10°
В треугольнке ABD
∠ADB=180°-∠BAD-∠B=180°-49°-10°=121°
3)В треугольнике АВС АС=ВС, значит треугольник равнобедренный и углы при основании равны,∠ABС= ∠ВAС
Так как ∠ ВАD= 35° и сумма острых углов прямоугольного треугольника равна 90 °, то ∠ АВD= 90°- 35°=55°
∠А=∠В=55°
∠С=180°-∠А-∠В=180°-55°-55°=70°
4) Сумма углов четырехугольника АЕОD равна 360°
Два угла по 90° (угол Е и угол D) и один 75°( угол А)
Значит ∠EOD=360°-90°-90°-75°=105°