точка О - центр окружности описанной около остроугольного треугольника АBC, найдите углы треугольника, если угол BAO= 20(градусов) и угол CAO = 30(градусов
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Для этого нужно составить уравнение, в котором x - средняя линия, так как средняя линия равна половине параллельной ей стороны, уравнение получится такое:
x + 27 = 2x
27 = 2x - x
27 = x
Следовательно, средняя линия KM = x = 27 см
ответ: KM = 27 см
2.
Дано: пиши то, что дано
Найти: P(ABCD)
Данным четырехугольником будет ромб (Это доказывается тем, что треугольники, на которые в итоги делится прямоугольник равны по двум сторонам и углу между ними)
Сторона ромба будет средней линией треугольника, параллельной диагонали прямоугольника (Она делит стороны прямоугольника пополам по условию), следовательно, она будет равна половине диагонали, т.е. 18 см
Периметром является сумма всех сторон, поэтому периметром данного ромба будет 18, умноженное на 4:
18 * 4 = 72 см
ответ: 72 см
3.
Дано: пиши то, что дано
Найти: AB, BC
Тут снова нужно составить уравнение, где x - боковая сторона, основание будет равно 7*2 = 14 см (Так как средняя линия равна половине параллельной ей стороне), в итоге, уравнение получится такое:
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
1.
Дано: пиши то, что дано
Найти: KM
Для этого нужно составить уравнение, в котором x - средняя линия, так как средняя линия равна половине параллельной ей стороны, уравнение получится такое:
x + 27 = 2x
27 = 2x - x
27 = x
Следовательно, средняя линия KM = x = 27 см
ответ: KM = 27 см
2.
Дано: пиши то, что дано
Найти: P(ABCD)
Данным четырехугольником будет ромб (Это доказывается тем, что треугольники, на которые в итоги делится прямоугольник равны по двум сторонам и углу между ними)
Сторона ромба будет средней линией треугольника, параллельной диагонали прямоугольника (Она делит стороны прямоугольника пополам по условию), следовательно, она будет равна половине диагонали, т.е. 18 см
Периметром является сумма всех сторон, поэтому периметром данного ромба будет 18, умноженное на 4:
18 * 4 = 72 см
ответ: 72 см
3.
Дано: пиши то, что дано
Найти: AB, BC
Тут снова нужно составить уравнение, где x - боковая сторона, основание будет равно 7*2 = 14 см (Так как средняя линия равна половине параллельной ей стороне), в итоге, уравнение получится такое:
14 + x + x = 43
2x = 43 - 14
2x = 29
x = 29/2
x = 14,5 см
AB = BC = x = 14,5 см
ответ: 14,5 см