Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6.
Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ)
Найдем основание трапеции: АМ+МD
6+6=12
Найдем площадь:
S=
ответ:54
0,25
Объяснение:
АТ и СР - медианы, проведенные к боковым сторонам равнобедренного треугольника АВС.
РТ - средняя линия треугольника АВС, значит
РТ = 1/2 АС = 1/2 · 1 = 0,5
Пусть М - середина СР. Проведем МН║АС (Н ∈ АВ), тогда по теореме Фалеса Н - середина АР.
МН - средняя линия треугольника АРС, значит
МН = 1/2 АС = 0,5
МН пересекает АТ в точке К.
Н - середина АР, НК║АС, а значит и НК║РТ, ⇒ по теореме Фалеса К - середина АТ.
НК - средняя линия треугольника АРТ.
НК = 1/2 РТ = 1/2 · 0,5 = 0,25
КМ - искомый отрезок.
КМ = МН - НК = 0,5 - 0,25 = 0,25