Дано: АС - диаметр окружности, точка В лежит на окружности, ВМ⊥АС, СМ=АМ+4.
Найти: r.
Рисунок к задаче смотри в прикрепленном файле.
Пусть АМ=х, тогда МС=х+4.
ΔАВМ прямоугольный, т.к. ВМ⊥АС (по условию).
По теореме Пифагора найдем ВМ.
Проведем отрезок ВС. ΔАВС прямоугольный, т.к. вписан в окружность и одна его сторона является диаметром окружности.
ВМ - высота, проведенная из вершины прямого угла к гипотенузе - вычисляется как корень квадратный из произведения длин отрезков, на которые высота поделила гипотенузу.
Мы получили два разных выражения, при которых можно найти длину отрезка ВМ. Поскольку результат у них будет одинаковый, приравняем их.
По теореме Виета x₁=-4, х₂=2.
х=-4 - посторонний корень (т.к. длина отрицательной быть не может).
1) В равнобедренном ΔАВС АС=ВС и СМ - высота, медиана и биссектриса, ОМ - радиус вписанной окружности, КА=АМ=NB=MB=8x, KC=CN=9x. Площадь треугольника можно найти по формуле: S=1/2AB*CM. 2) Рассмотрим ΔCMB - прямоугольный. По т.Пифагора находим СМ=√(ВС²-ВМ²)=√((17х)²-(8х)²)=√(289х²-64х²)= =√(225х²)=15х. Так как центр вписанной окружности - это точка пересечения биссектрис, то можно использовать свойство биссектрисы: b:c=b1:c1. Используем это свойство для ΔСМВ и биссектрисы ВО: СB:BM=CO:OM; 17x:8x=CO:16; 17:8=CO:16; CO=17*16/8=34 (см). СМ=СО+ОМ=34+16=50 (см). СМ=15х=50; x=50/15=10/3. 3) ΔABC: AB=16x=16*10/3=160/3 (см). СМ=50 см. Находим площадь ΔАВС: S=1/2*AB*CM=1/2*160/3*50=4000/3=1333 (см²). ответ: 1333 см².
r=4 см
Объяснение:
Дано: АС - диаметр окружности, точка В лежит на окружности, ВМ⊥АС, СМ=АМ+4.
Найти: r.
Рисунок к задаче смотри в прикрепленном файле.
Пусть АМ=х, тогда МС=х+4.
ΔАВМ прямоугольный, т.к. ВМ⊥АС (по условию).
По теореме Пифагора найдем ВМ.
Проведем отрезок ВС. ΔАВС прямоугольный, т.к. вписан в окружность и одна его сторона является диаметром окружности.
ВМ - высота, проведенная из вершины прямого угла к гипотенузе - вычисляется как корень квадратный из произведения длин отрезков, на которые высота поделила гипотенузу.
Мы получили два разных выражения, при которых можно найти длину отрезка ВМ. Поскольку результат у них будет одинаковый, приравняем их.
По теореме Виета x₁=-4, х₂=2.
х=-4 - посторонний корень (т.к. длина отрицательной быть не может).
АМ=2, МС=2+4=6.
АС=АМ+МС=2+6=8
ответ: r=4 см.
ОМ - радиус вписанной окружности, КА=АМ=NB=MB=8x, KC=CN=9x.
Площадь треугольника можно найти по формуле:
S=1/2AB*CM.
2) Рассмотрим ΔCMB - прямоугольный.
По т.Пифагора находим СМ=√(ВС²-ВМ²)=√((17х)²-(8х)²)=√(289х²-64х²)=
=√(225х²)=15х.
Так как центр вписанной окружности - это точка пересечения биссектрис, то можно использовать свойство биссектрисы: b:c=b1:c1.
Используем это свойство для ΔСМВ и биссектрисы ВО:
СB:BM=CO:OM;
17x:8x=CO:16;
17:8=CO:16;
CO=17*16/8=34 (см).
СМ=СО+ОМ=34+16=50 (см).
СМ=15х=50;
x=50/15=10/3.
3) ΔABC: AB=16x=16*10/3=160/3 (см).
СМ=50 см.
Находим площадь ΔАВС:
S=1/2*AB*CM=1/2*160/3*50=4000/3=1333 (см²).
ответ: 1333 см².