если рассмотреть отрезки, касательных до сторон угла, то точки касания разобьют на, например, х и у, гипотенузу, тогда точки касания катетов соответственно разобьют катеты на отрезки (х+r) и (y+r), и, следовательно, периметр будет равен х+r+у+r+х+у, здесь а=x+r, в=у+r; с=х+у. но тогда периметр равен 2х+2r+2у=2(х+у)+2r=2(с+r)
Если теперь приравнять полученные преиметры. т.е. 2с+2r=а+в+с,
разделить левую и правую части на 2, то получим с+r=(а+в+c)/2, и отнять с от левои и правой части, то получимr=(а+в+с)/2-с,
Теорема - это высказывание, истинность которого необходимо доказать.
В теореме можно выделить 3 части:
1) преамбула. В ней описываются множества, относительно которых задана теорема. Это области определения высказывания А и высказывания В.
2) условия теоремы. Это предложение А или то что дано в теореме.
3) заключение теоремы. Это предложение В или то что нужно доказать в теореме.
Различают 4 вида теорем:
1. Данная теорема. Например: вертикальные углы равны. Если углы вертикальные, то они равны.
2. Теорема обратная данной. Например: если углы равны, то они вертикальные (данная теорема - ложна).
3. Теорема противоположная данной - Если углы не вертикальные, то они не равны (данная теорема ложна).
4. Теорема противоположная обратной - Если углы не равны, то они не вертикальные. (Истинная теорема)
если рассмотреть отрезки, касательных до сторон угла, то точки касания разобьют на, например, х и у, гипотенузу, тогда точки касания катетов соответственно разобьют катеты на отрезки (х+r) и (y+r), и, следовательно, периметр будет равен х+r+у+r+х+у, здесь а=x+r, в=у+r; с=х+у. но тогда периметр равен 2х+2r+2у=2(х+у)+2r=2(с+r)
Если теперь приравнять полученные преиметры. т.е. 2с+2r=а+в+с,
разделить левую и правую части на 2, то получим с+r=(а+в+c)/2, и отнять с от левои и правой части, то получимr=(а+в+с)/2-с,
r=(а+в-с)/2