ответ: после построения диагоналей ромб разбивается на 4 треугольника. диагонали ромба располагаются под прямым углом, то есть, треугольники, которые образовались, оказываются прямоугольными.
обозначим большую и малую диагонали ромба как d₁ и d₂, а углы ромба — а (острый) и в (тупой), теперь из формулы
1) компланарные векторы- это : если векторы свести к общему началу, то они лежат в одной плоскости. а) AD, AB1, B1D. они образуют Δ, а Δ задаёт плоскость. Так что эти векторы компланарные. б)АВ, AD, AA1- эти векторы не лежат в одной плоскости. Они не компланарны. 2)a) С1В1 + С1D1+CC1=CC1 + C1D + C1B1= CD1 + C1B1= =CD1 + CB = CA1 б)АВ + А1D1 + AA1 = AA1 + A1D1+AB=AD1+AB=AC1 3) a) AC1 = AB + AD + AA1 б) 1. D1A1 + A1C1 = D1C1 2. D1A1-D1C1=A1C1 3.AA1 + A1C = AC 4.AC = A1C1 5.AA1 = AC - A1c = D1A1-D1C1-A1C
ответ: после построения диагоналей ромб разбивается на 4 треугольника. диагонали ромба располагаются под прямым углом, то есть, треугольники, которые образовались, оказываются прямоугольными.
обозначим большую и малую диагонали ромба как d₁ и d₂, а углы ромба — а (острый) и в (тупой), теперь из формулы
tg a = 2/((d₁/d₂)-(d₂/d₁)) находим
tg a = 2/((2√3 /2)-(2/2√3)) = 2/(√3-1/√3)=
2/(√3-√3/3=2/(√3(1-1/3)= 2/(√3(2/3)=
2√3/2=√3
tg 60°=√3
углы ромба 60° и 120°
подробнее - на -
объяснение:
а) AD, AB1, B1D. они образуют Δ, а Δ задаёт плоскость. Так что эти векторы компланарные.
б)АВ, AD, AA1- эти векторы не лежат в одной плоскости. Они не компланарны.
2)a) С1В1 + С1D1+CC1=CC1 + C1D + C1B1= CD1 + C1B1=
=CD1 + CB = CA1
б)АВ + А1D1 + AA1 = AA1 + A1D1+AB=AD1+AB=AC1
3) a) AC1 = AB + AD + AA1
б) 1. D1A1 + A1C1 = D1C1
2. D1A1-D1C1=A1C1
3.AA1 + A1C = AC
4.AC = A1C1
5.AA1 = AC - A1c = D1A1-D1C1-A1C