2) ΔАВС , АМ, СК ВД - медианы, пересекаются в точке О , ∠АОС=90° ,
АС=12 см . Найти: ВД .
ΔАОС - прямоугольный, ОД - медиана , проведённая из прямого угла АОС . Она равна половине гипотенузы АС, то есть ОД=12:2=6 см.
Медианы в точке пересечения делятся в отношении 2:1, считая от вершины, то есть ВО:ОД=2:1 . Значит, ВО=2·ОД=2·6=12 см .
Вся медиана ВД=ВО+ОД=12+6=18 см
3) АВСД - трапеция , ВС║АД , РТ - средняя линия трапеции ,
АС ∩ РТ= М , ВД ∩ РТ = К , ВС=4 см , АД=12 см . Найти МК .
Рассм. ΔАВС , РМ - средняя линия, РМ=0,5·ВС=0,5·4=2 см .
Рассм. ΔАВД , РК - средняя линия , РК=0,5·АД=0,5·12=6 см .
МК=РК-РМ=6-2=4 см .
MN - средняя линия треугольника АВС, значит MN║AC и MN = AC/2 = 42/2 = 21 см
NK- средняя линия треугольника BCD, значит NK║BD и NK = BD/2 = 38/2 = 19 см
КР - средняя линия треугольника ADC, значит КР║АС и КР = АС/2 = 42/2 = 21 см
РМ - средняя линия треугольника ABD, значит РМ║BD и РМ = BD/2 = 38/2 = 19 см
MNKP - параллелограмм, так его противоположные стороны равны.
Pmnkp = (MN + NK) · 2 = (21 + 19) · 2 = 40 · 2 = 80 cм
Вообще, если соединить середины сторон любого выпуклого четырехугольника, получим параллелограмм, периметр которого равен сумме диагоналей четырехугольника, а площадь равна половине его площади.
2) ΔАВС , АМ, СК ВД - медианы, пересекаются в точке О , ∠АОС=90° ,
АС=12 см . Найти: ВД .
ΔАОС - прямоугольный, ОД - медиана , проведённая из прямого угла АОС . Она равна половине гипотенузы АС, то есть ОД=12:2=6 см.
Медианы в точке пересечения делятся в отношении 2:1, считая от вершины, то есть ВО:ОД=2:1 . Значит, ВО=2·ОД=2·6=12 см .
Вся медиана ВД=ВО+ОД=12+6=18 см
3) АВСД - трапеция , ВС║АД , РТ - средняя линия трапеции ,
АС ∩ РТ= М , ВД ∩ РТ = К , ВС=4 см , АД=12 см . Найти МК .
Рассм. ΔАВС , РМ - средняя линия, РМ=0,5·ВС=0,5·4=2 см .
Рассм. ΔАВД , РК - средняя линия , РК=0,5·АД=0,5·12=6 см .
МК=РК-РМ=6-2=4 см .
MN - средняя линия треугольника АВС, значит MN║AC и MN = AC/2 = 42/2 = 21 см
NK- средняя линия треугольника BCD, значит NK║BD и NK = BD/2 = 38/2 = 19 см
КР - средняя линия треугольника ADC, значит КР║АС и КР = АС/2 = 42/2 = 21 см
РМ - средняя линия треугольника ABD, значит РМ║BD и РМ = BD/2 = 38/2 = 19 см
MNKP - параллелограмм, так его противоположные стороны равны.
Pmnkp = (MN + NK) · 2 = (21 + 19) · 2 = 40 · 2 = 80 cм
Вообще, если соединить середины сторон любого выпуклого четырехугольника, получим параллелограмм, периметр которого равен сумме диагоналей четырехугольника, а площадь равна половине его площади.