Точка равноудалённая от катетов образует внутри прямоугольного треугольника квадрат со стороной а, вершины которого - вершина прямого угла, точка на гипотенузе и две точки на катетах, от которых равноудалена заданная. Внутри прямоугольного образовались квадрат и два подобные между собой прямоугольных треугольника, которые подобны исходному треугольнику . пусть Один из катетов прямоугольного треугольника(1) - х и гипотенузой - 40 см, тогда соответствующий катет прямоугольного треугольника(2) - а см и гипотенузой - 30 см. Составим систему уравнений: Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: = 1764, второй катет равен
Розглянемо ΔABO. OB⊥AB (властивість радіуса, проведеного в точку дотику кола з січною). OB = AB * tg∠OAB = 10 * 0,9325 = 9,325.
∠BOH = 90°-43° = 47°.
Розглянемо ΔBAC. Він рівнобедрений, бо AB = AC (відрізки кута від вершини до точок дотику з вписаним колом рівні). AO - бісектриса (центр вписаного кола лежить на бісектрисі), а тому вона одночасно і медіана і висота. Тому ΔBOH - прямокутний.
Тогда один катет исходного прямоугольного треугольника - х+а=56 см. Второй катет по теореме Пифагора: = 1764, второй катет равен
Відповідь:
BO ≈ 9,33; BC ≈ 13,64
Пояснення:
Розглянемо ΔABO. OB⊥AB (властивість радіуса, проведеного в точку дотику кола з січною). OB = AB * tg∠OAB = 10 * 0,9325 = 9,325.
∠BOH = 90°-43° = 47°.
Розглянемо ΔBAC. Він рівнобедрений, бо AB = AC (відрізки кута від вершини до точок дотику з вписаним колом рівні). AO - бісектриса (центр вписаного кола лежить на бісектрисі), а тому вона одночасно і медіана і висота. Тому ΔBOH - прямокутний.
BH = OB*sin∠BOH = 9,325*0,7314 = 6,8203.
BC = 2*BH = 2*6,8203 = 13,6406