Точка пересечения O — серединная точка для обоих отрезков AD и BC.
Найди величину сторон AB и BO в треугольнике ABO, если DC = 45,5 см и CO = 29,2 см
(При ответе упорядочи вершины таким образом, чтобы углы при них были попарно равны.)
AC1.png
А. Так как отрезки делятся пополам, то
1. сторона BO в треугольнике ABO равна стороне в треугольнике DCO;
2. сторона AO в треугольнике ABO равна стороне в треугольнике DCO.
Угoл BOA равен углу как вертикальный угол.
Треугольники равны по первому признаку равенства треугольников.
В равных треугольниках соответствующие стороны равны.
AB =
см;
BO =
см.
Из равенства треугольников имеем: АК=РС. Итак, в четырехугольнике АРСК противоположные стороны АК и РС равны и параллельны. Но, если четырехугольник имеет пару параллельных и равных сторон, то такой четырехугольник - параллелограмм (признак).
Что и требовалось доказать.
2. По Пифагору: DC=√(169-144)=5. Sckd=(1/2)*KD*DC= (1/2)*8*5=20.
Заметим, что Sabp=Sckd, а Sapck=Sabcd-2*Sckd=60-2*20=20.
ответ: Sapkd=20.
3. По Пифагору СК=√(64+25)=√89.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: АС²+РК²=2*СК²+2АК² или 169+РК²=2*16+2*89, отсюда
PK=√41.