Точка пересечения O — серединная точка для обоих отрезков AD и BC.
Найди величину сторон AB и BO в треугольнике ABO, если DC = 14,7 см и CO = 45,4 см
(При ответе упорядочи вершины таким образом, чтобы углы при них были попарно равны.)
А. Так как отрезки делятся пополам, то
1. сторона BO в треугольнике ABO равна стороне ??? в треугольнике DCO;
2. сторона AO в треугольнике ABO равна стороне ??? в треугольнике DCO.
Угoл BOA равен углу ??? как вертикальный угол.
Треугольники равны по первому признаку равенства треугольников.
В равных треугольниках соответствующие стороны равны.
AB = см;
BO = см.
3840/h^2 = 60, откуда h^2 = 64, откуда h=8.
Объем равен 30*8 = 240
R=3/cos 18=3/0.95=3.15 (см).
Найдем сторону фигуры:
a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см)
ответ: 1.89 см.
2) Найдем R:
R = r/cos 180/n=5/√3/2=10√3/3 (см)
Длина стороны равна R, следовательно a=R=10√3/3, значит,
P = 6a=10√3/3*6=20√3 (cм) или 34.64 см.
ответ: 20√3 см или 34.64 см.
3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см).
ответ: 30 см.