Точка пересечения O — серединная точка для обоих отрезков AD и RM. Найди величину углов ∡A и ∡R в треугольнике ARO, если ∡M = 29° и ∡D = 21°. А. Так как отрезки делятся пополам, то... 1. сторона RO в треугольнике ARO равна стороне в треугольнике 2. сторона AO в треугольнике ARO равна стороне в треугольнике Угoл ROA равен углукак вертикальный угол. Треугольники равны по первому признаку равенства треугольников. Б. В равных треугольниках соответствующие углы равны. (Запиши в окошках градусную меру углов!) ∡A = ∡R =
точка находится перпендикулярно к оси пересечения диагоналей ромба, и образует прямоугольный треугольник относительно к оси пересечения диагоналей и одной стороны ромба. где расстояние от точки до стороны ромба является гипотенузой, а радиус вписанной окружности катетом . а неизвестное расстояние от точки до плоскости ромба высотой и вторым катетом.
по теореме Пифагора a²+b²=c²
катет a=r=6см радиус вписанной окружности в ромб,
гипотенуза с=L=10см расстояние от точки до стороны ромба ,
катет b=h высота, расстояние от точки до плоскости ромба ,
расстояние от точки до плоскости ромба 8см
Объяснение:
площадь ромба через синус любого угла
S=a²×sinα , отсюда сторона
а=√S/sinα= √(144√2÷sin45°)=√(144√2÷√2/2)=
√(144√2×2/√2)=√144×2=12√2 см
радиус вписанной окружности в ромб
r=S/2a=144√2 /2×12√2=144√2/24√2=144/24=6см
точка находится перпендикулярно к оси пересечения диагоналей ромба, и образует прямоугольный треугольник относительно к оси пересечения диагоналей и одной стороны ромба. где расстояние от точки до стороны ромба является гипотенузой, а радиус вписанной окружности катетом . а неизвестное расстояние от точки до плоскости ромба высотой и вторым катетом.
по теореме Пифагора a²+b²=c²
катет a=r=6см радиус вписанной окружности в ромб,
гипотенуза с=L=10см расстояние от точки до стороны ромба ,
катет b=h высота, расстояние от точки до плоскости ромба ,
находим h=√(L²-r²)=√(10²-6²)=√(100-36)=√64=8см
случае наименьший угол равен ∠ =
180
Объяснение:Рассмотрим треугольник ABC с углами ∠ = ∠ = , ∠ = 180 − 2. Чтобы
получилось два треугольника прямая должна проходить через одну из вершин.
Рассмотрим случай, когда она проходит через вершину A и делит треугольник на два: ADB
и ADC (см. рис.).
Треугольник ADC является равнобедренным в двух случаях:
I) ∠ = . Приравнивая ∠ = ∠ (т.к. угол ∠ тупой) приходим к
уравнению 180 − 2 = 3 − 180
, откуда = 72
. Наименьший угол тогда
равен ∠ = 36
II) ∠ = ∠ =
180−
2
. Тогда 3
2
− 90 = 180 − 2, откуда =
540
7