Точка пересечения O — серединная точка для обоих отрезков NF и TV.
Найди величину сторон NT и TO в треугольнике NTO, если FV = 49,4 см и VO = 31,1 см
(При ответе упорядочи вершины таким образом, чтобы углы при них были попарно равны.)
А. Так как отрезки делятся пополам, то
1. сторона TO в треугольнике NTO равна стороне в треугольнике FVO;
2. сторона NO в треугольнике NTO равна стороне в треугольнике FVO.
Угoл TON равен углу как вертикальный угол.
Треугольники равны по первому признаку равенства треугольников.
В равных треугольниках соответствующие стороны равны.
NT =
см;
TO =
см.
Смотри. Задача не сложна если нарисовать рисунок.
Нам известна высота пирамиды и высота боковой грани. То есть это есть прямоугольной треугольник(высота пирамиды - перпендикуляр к основанию, а высота боковой грани - это гипотенуза. На рисунке чётко видно что треугольник DES - прямоугольный. Нам известна гипотенуза и катет, так давай найдём второй катет за теоремой Пифагора.
DE =
Разложим по формуле a²-b²=(a-b)(a+b)
DE =
=
- отрезок DE
Маленькая подсказка. Если с центра треугольника проведён отрезок к стороне треугольника тогда это радиус ВПИСАННОЙ окружности, а если к вершине - ОПИСАННОЙ
То есть DE - радиус вписанной окружности
Есть такая формула
r =
Где р - полупериметр, а S - площадь. Подставляем наши значения
12 = s/42
S = 12×42 = 504 см²
ответ:Используем зависимость отрезков касательной и секущей, проведенных из одной точки вне окружности.
1) Произведение секущей на ее внешнюю часть равно квадрату касательной:
СM*BM=AM^2; (2R+20)*20 40^2; 40R+400=1600; R=30 ===> OA=30; OM=50; CM=80.
2) Радиус, проведенный в точку касания, перпендикулярен касательной: тр-к ОАМ - прямоугольный.
По определению синуса в тр-ке ОАМ: sin M= OA/OM= 30/50 = 0,6.
3) Площадь тр-ка равна половине произведения сторон на синус угла между ними: S(ACM)=1/2*AM*CM*sinM=0,5*40*80*0,6= 960 кв. ед.
4) cos M=√(1-sin^2 M)= √(1-9/25)=4/5=0,8.
По теореме косинусов в тр-ке АМВ: AB^2=AM^2+BM^2 - 2*AM*BM*cosM;
AB^2 =40^2+20^2 - 2*40*20*0,8;
AB^2=720; AB=√720=12√5.
Объяснение: