Точка пересечения O — серединная точка для обоих отрезков PE и RS.
Как исполняется первый признак равенства треугольников POR и EOS?
Так как отрезки делятся пополам, то
1. сторона RO в треугольнике POR равна стороне... в треугольнике... .
2. Сторона PO в треугольнике POR равна стороне в треугольнике .
Угoл POR равен углу как вертикальный угол.
Треугольники равны по первому признаку равенства треугольников.
Сумма внешних углов любого выпуклого n-угольника равна 360° Внешним углом выпуклого многоугольника при данной вершине называется угол, смежный внутреннему углу многоугольника при этой вершине. Внешний и внутренний углы составляют развернутый угол, их сумма равна 180°. Тогда внутренний угол равен для правильных:
треугольника – 180°-(360°:3)=60°
четырёхугольника – 180°-(360°:4)=90°
пятиугольника – 180°-(360°:5)=108°
шестиугольника – 180°-(360°:6)=120°
десятиугольника – 180°-(360°:10)=144°
восемнадцатиугольника 180°-(360°:18)=160°
Площадь ромба равна произведению диагоналей поделить на два, и также она равна произведению стороны и опущенной на нее высоты. Из первого случая S = AC1*A1C = (6 умножить на 2 корня из 7) поделить на два, S ромба = 6 корней из 7. Из второй формулы имеем: S = AC*A1K, 6 корней из 7 = А1К*4б А1К = 6 корней из 7 поделить на 4, А1К = 3 корня из 7 разделить на 2.
Найдем площадь основания через формулу Герона: S = корень из p(p - AB)(p - BC)(p - AC), р - полупериметр треугольника, р = 4*3/2 = 12/2 = 6. S = корень из 6(6-4)(6-4)(6-4) = 6*2*2*2 = 6*8 = 48. S = корень из 48 = 4 корня из 3. Площадь основания равна 4 корня из 3.
Объем призмы равен произведению площади основания на высоту^ V = So*H. Поскольку грань, которая является ромбом, перпендикулярна к основанию, то высота ромба равна высоте призмы: A1K = H = 3 корня из 7 поделить на 2. V = 4 корня из 3 умножить на 3 корня из 7 и разделить на 2. V = 6 корней из 21.