Точка пересечения O — серединная точка для обоих отрезков PG и RS. Найди величину сторон PR и RO в треугольнике PRO, если GS = 17,9 см и SO = 35,3 см
(При ответе упорядочи вершины таким образом, чтобы углы при них были попарно равны.)
 А. Так как отрезки делятся пополам, то
1. сторона RO в треугольнике PRO равна стороне SGGOSO в треугольнике GSO;
2. сторона PO в треугольнике PRO равна стороне SGGOSO в треугольнике GSO.
Угoл ROP равен углу OSGSGOSOG как вертикальный угол.
Треугольники равны по первому признаку равенства треугольников.
В равных треугольниках соответствующие стороны равны.
PR = см;
RO = см.
номер 15
дано: угол ТЕR = 75 градусов
ER - бисектриса
ET = FR = EF
75+75=150 градусов - угол E
E=R, T=F
угол R = 150 градусов
360 - (150+150) = 60 градусов
60:2=30
угол T=30 градусов
угол F=30 градусов
номер 16 (тут я не знаю до конца, попробуй загуглить)
угол О = 115 градусов (и с одной стороны угла, и с другой так как углы вертикальны)
угол N=115 градусов (так же и с одной строны угла и с другой так как они тоже вертикальны)
угол E = угол M
номер 10
назовем среднюю точку - O
дано: угол NOM = 120 градусов
EN=FM
из-за вертикальности углов можно сказать, что угол EOF = 120 градусов
угол OEN= 90 градусов
угол MFO= 90 градусов
180-120=60 градусов : 2 = 30.
углы ONM, OMN= по 30 градусов.
угол N= 60, угол M= 60
180-(90+30)= 60 градусов.
углы EON и FOM = по 60 градусов на каждый угол.
180-120= 60 градусов, значит:
60 : 2 = 30.
Угол OEF = 30 градусов.
Угол OFE = 30 градусов.
Угол E = 90 + 30 = 120 градусов.
Угол F = тоже 120 градусов.
Поскольку отрезок DE (параллельный плоскости альфа) лежит в плоскости треугольника АВС, а плоскость треугольника АВС пересекает плоскость альфа по прямой ВС, значит, линия пересечения плоскостей (линия ВС) параллельна DE. Т.е. DE и ВС параллельны. Отсюда следует, что треугольники АВС и АДЕ – подобны, т.к. отрезок, параллельный стороне треугольника, отсекает треугольник подобный данному. АВ = АД + ДВ = 9 + 2 = 11 условных единиц. Из подобия указанных треугольников можно записать ВС/ДЕ = АВ/АД. Отсюда ВС= АВ*ДЕ/АД = 11*7/9 =77/9 см.
Объяснение: