через две пересекающиеся прямые проходит плоскость, и притом только одна.
прямые l и m пересекаются, следовательно, лежат в одной плоскости а₁в₁в₂а₂.
из свойства параллельных плоскостей:
линии пересечения двух параллельных плоскостей третьей плоскостью параллельны.
отрезки а₁в₁ и а₂в₂ параллельны, т.к. лежат в параллельных плоскостях α и β и являются линиями пересечения этих плоскостей с плоскостью а₁в₁в₂а₂..
в ∆ а₁ов₁ и ∆ а₁ов₁ углы при о равны как вертикальные, и углы при а₁в₁ и а₂в₂ равны как накрестлежащие при пересечении параллельных прямых секущими l и m
следовательно,
треугольники ∆ а₁ов₁ и ∆ а₂ов₂ подобны по равенству углов.
Давайте вспомним определение косинуса в прямоугольном треугольнике.Косинус в прямоугольником треугольнике — это отношение прилежащего катета (маленькой стороны рядом с углом) к гипотенузе (самой длинной стороне прямоугольного треугольника).Рассмотрим треугольник AHC. Известно, что cosA=0.8cosA=0.8Но что такое "косинус угла А" по определению? Это отношение прилежащей стороны к гипотенузе. То есть: cosA=AHAC0.8==AHACAH=0.8⋅AC=0.8⋅4=3.2cosA=AHAC0.8==AHACAH=0.8⋅AC=0.8⋅4=3.2
ответ:
по следствию 2 из аксиомы 1 стереометрии:
через две пересекающиеся прямые проходит плоскость, и притом только одна.
прямые l и m пересекаются, следовательно, лежат в одной плоскости а₁в₁в₂а₂.
из свойства параллельных плоскостей:
линии пересечения двух параллельных плоскостей третьей плоскостью параллельны.
отрезки а₁в₁ и а₂в₂ параллельны, т.к. лежат в параллельных плоскостях α и β и являются линиями пересечения этих плоскостей с плоскостью а₁в₁в₂а₂..
в ∆ а₁ов₁ и ∆ а₁ов₁ углы при о равны как вертикальные, и углы при а₁в₁ и а₂в₂ равны как накрестлежащие при пересечении параллельных прямых секущими l и m
следовательно,
треугольники ∆ а₁ов₁ и ∆ а₂ов₂ подобны по равенству углов.
тогда отношение а₁в₁: а₂в₂=3: 4.
12: а₂в₂=3/4
3 а₂в₂=48 см
а₂в₂=16 см
cosA=AHAC0.8==AHACAH=0.8⋅AC=0.8⋅4=3.2cosA=AHAC0.8==AHACAH=0.8⋅AC=0.8⋅4=3.2
ответ: длина отрезка AH равна 3,2 см.