Так как по условию xm+yn=5n, тоxm =(5-y)n если x не равно 0, то разделив левую и правую части уравнения на x, получим m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b Следовательно, если a и b не коллинеарны то такого числа не существует. А в нашем примере такое число есть (при x не равном 0). Следовательно если x не равно 0, то векторы коллинеарны. А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0. ответ: x = 0 и y = 0
Для удобства расчёта примем сторону квадрата, равной 4, а высоту - 6. Задачу можно решить или геометрическим или координатным. Для этого определяем координаты точек пересечения заданной секущей плоскости с рёбрами параллелепипеда. Точка К делит ребро А1В1 так: А1К = (2/3)*4 = 8/3, КВ1 = 4/3. Тогда длина отрезка КМ = (4/3)*√2 = 4√2/3 (это след пересечения верхней грани секущей плоскостью). В нижней грани отрезок ТР делит рёбра пополам и равен 2√2. Точки О и Е на боковых рёбрах находим из вс построения. Отрезок ТР продлеваем до пересечения с рёбрами АВ и ВС. Из точек К и М проводим прямые в эти точки, которые пересекают рёбра АА1 и СС1 в точках О и Е. Детали приведены в приложениях.
если x не равно 0, то разделив левую и правую части уравнения на x, получим
m =((5-y)/x) n, где ((5-y)/x) какое-то число.
По условию коллинеарности:Два вектора a и b коллинеарны, если существует число не равное нулю n такое, что a = n · b
Следовательно, если a и b не коллинеарны то такого числа не существует.
А в нашем примере такое число есть (при x не равном 0).
Следовательно если x не равно 0, то векторы коллинеарны.
А так как по условию они не коллинеарны, то x = 0. Тогда и y = 0.
ответ: x = 0 и y = 0
Задачу можно решить или геометрическим или координатным.
Для этого определяем координаты точек пересечения заданной секущей плоскости с рёбрами параллелепипеда.
Точка К делит ребро А1В1 так: А1К = (2/3)*4 = 8/3, КВ1 = 4/3.
Тогда длина отрезка КМ = (4/3)*√2 = 4√2/3 (это след пересечения верхней грани секущей плоскостью).
В нижней грани отрезок ТР делит рёбра пополам и равен 2√2.
Точки О и Е на боковых рёбрах находим из вс построения.
Отрезок ТР продлеваем до пересечения с рёбрами АВ и ВС. Из точек К и М проводим прямые в эти точки, которые пересекают рёбра АА1 и СС1 в точках О и Е.
Детали приведены в приложениях.