найдите отношение площадей 2 треугольников, если стороны одного равны 36см,24 см,42 см, стороны другогоотносятся как 4:6:7,а егоменьшая сторона равнв 8 см.
Найдем стороны второго треугольника:
4/6 = 8 см / х, х = 6*8:4 = 12 см; 4/7 = 8 см/ х, х = 7*8:4 = 14 см
S произвольного треугольника = 1/2 * а*h
h = 2:а * vр(р-а)(р-в)(р-с), р - полупериметр, v - это корень
найдите отношение площадей 2 треугольников, если стороны одного равны 36см,24 см,42 см, стороны другогоотносятся как 4:6:7,а егоменьшая сторона равнв 8 см.
Найдем стороны второго треугольника:
4/6 = 8 см / х, х = 6*8:4 = 12 см; 4/7 = 8 см/ х, х = 7*8:4 = 14 см
S произвольного треугольника = 1/2 * а*h
h = 2:а * vр(р-а)(р-в)(р-с), р - полупериметр, v - это корень
Площадь первого треугольника.
р = (36+24+42):2 = 51 см
h = 2:24*v51(51-24)(51-36)(51-42) = 35,9 см
S = 1/2 * 24 * 35,9 = 430,8 см^2
Площадь второго треугольника.
р = (8+12+14):2 = 17
h = 2:12*v17(17-12)(17-8)(17-14) = 7,9 см
S = 1/2 * 12*7,9 = 47,4 см^2
47,4 : 430,8 = 1 : 9
ответ: отношение площадей 2 треугольников 1 : 9.
№1
Найдем гипотенузу AB
AB= 3√3 : √3/2=6
Найдем BC
По теореме Пифагора:
36-27=9 BC=3
ответ: 3
№2
треугольники CHB и CHA
Из треугольника CHB найдем СH.
Так как тругольник ABC ранвостороний, то точка H делит AB на две равные отрезки (AH=HB) HB= 2√2/2= √2
По теореме Пифагора:
CH^2 + (√2)^2=(2√2)^2
CH=√6
ответ: √6
№3
ABCD-ромб, точка О- точка пересечения диагоналей.
Так как угол АВС=60 градусов, то угол ОВС=30 градусов
Из треугольника BOC
ВО=19* cos30 градусов=19 * √3/2= 9,5√3
По теореме Пифагора найдем OC
OC^2=361-270,75=90,25 OC=9,5
AС-меньшая диагональ ромба
AC=2OC
AC=2*9,5=19
ответ: 19