АВС - основание пирамиды
S - вершина
О - середина основания
SO - высота = 9√3
АВ=ВС=АС= 9√3
SA - ?
Найдём длину АО:
АО = 1/2 * АP
где АР - высота треугольника АВС
Найдем площадь треугольника:
S = a²√3/4 = (9√3)²*√3/4 = 243√3 /4 см²
Также площадь треугольника находится через высоту:
S = 1/2 * a * h
Найдём отсюда высоту:
243√3 /4 = 1/2 * 9√3 * h
1/2 * h = 81/4
h = 81/2 см
AO = 1/2 * 81/2 = 81/4 см
По теореме Пифагора:
SA² = AO²+SO²
SA² = (81/4)² + (9√3)²
SA² = 6561/16 + 243
SA² = 10449/16
SA = √10449/4
ответ: √10449/4 см
прямая призма АВСДА1В1С1Д1, в основании ромб АВСД, ВД=5, уголВ=уголД=120, уголА=уголС=180-120=60, ВД -биссектриса угла В, уголАВД=уголДВС=уголВ/2=120/2=60, треугольник АВД равносторонний все углы=60, АВ=ВД=АД=5,
площадь АВСД=АВ в квадрате*sinA=5*5*корень3/2=25*корень3/2,
ВД1-меньшая диагональ, уголД1ВД=45, треугольник Д1АВД прямоугольный, равнобедренный, уголВД1Д=90-уголД1ВД=90-45=45, ВД=Д1Д=5 - высота призмы,
площадь боковой поверхности=периметрАВСД*Д1Д=(4*5)*5=100,
площадь полная=2*площадь основания+ площадь боковой=2*25*корень3/2 + 100=25*корень3+100=25*(корень3+4),
площадь диагонального сечения ВВ1Д1Д=ВД*Д1Д=5*5=25
АВС - основание пирамиды
S - вершина
О - середина основания
SO - высота = 9√3
АВ=ВС=АС= 9√3
SA - ?
Найдём длину АО:
АО = 1/2 * АP
где АР - высота треугольника АВС
Найдем площадь треугольника:
S = a²√3/4 = (9√3)²*√3/4 = 243√3 /4 см²
Также площадь треугольника находится через высоту:
S = 1/2 * a * h
Найдём отсюда высоту:
243√3 /4 = 1/2 * 9√3 * h
1/2 * h = 81/4
h = 81/2 см
AO = 1/2 * 81/2 = 81/4 см
По теореме Пифагора:
SA² = AO²+SO²
SA² = (81/4)² + (9√3)²
SA² = 6561/16 + 243
SA² = 10449/16
SA = √10449/4
ответ: √10449/4 см
прямая призма АВСДА1В1С1Д1, в основании ромб АВСД, ВД=5, уголВ=уголД=120, уголА=уголС=180-120=60, ВД -биссектриса угла В, уголАВД=уголДВС=уголВ/2=120/2=60, треугольник АВД равносторонний все углы=60, АВ=ВД=АД=5,
площадь АВСД=АВ в квадрате*sinA=5*5*корень3/2=25*корень3/2,
ВД1-меньшая диагональ, уголД1ВД=45, треугольник Д1АВД прямоугольный, равнобедренный, уголВД1Д=90-уголД1ВД=90-45=45, ВД=Д1Д=5 - высота призмы,
площадь боковой поверхности=периметрАВСД*Д1Д=(4*5)*5=100,
площадь полная=2*площадь основания+ площадь боковой=2*25*корень3/2 + 100=25*корень3+100=25*(корень3+4),
площадь диагонального сечения ВВ1Д1Д=ВД*Д1Д=5*5=25