Если диагональное сечение правильной четырёхугольной пирамиды-равнобедренный прямоугольный треугольник, катет которого равен "а", то основание (гипотенуза) этого треугольника - диагональ квадрата основания пирамиды равно а√2. Высота пирамиды - это высота равнобедренного прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а. Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания Р = 4а. Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды: Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) = = a³/3√2.
Таблицы не вижу. Признаки равенства треугольников таковы:
1. Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. 2. Если сторона и два прилежащих угла одного треугольника равны соответствующей стороне и прилегающим углам другого треугольника, то такие треугольники равны. 3. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны. Отсюда, кстати, вытекают следствия для равенства прямоугольных треугольников.
1. Если два катета одного прямоугольного треугольника равны катетам другого треугольника то они равны. 2. Если катет и острый угол одного треугольника равны катету и острому углу другого треугольника, то они равны. 3. Если гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого треугольника то они равны. 4. Если катет и гипотенуза одного треугольника равны катету и гипотенузе другого треугольника то они равны. 5. Если гипотенуза одного равнобедренного треугольника равна гипотенузе другого равнобедренного треугольника, то они равны. И т.д.
Высота пирамиды - это высота равнобедренного
прямоугольного треугольника, она равна половине его гипотенузы и равна H = а√2/2 = а/√2.
Так как гипотенуза основания пирамиды - диагональ квадрата, то сторона его равна а√2/√2 = а.
Это означает, что все рёбра пирамиды равны а, боковые грани - равносторонние треугольники.
Отсюда площадь основания So = a², периметр основания
Р = 4а.
Находим апофему боковой грани: А = а*cos30 = a√3/2.
Площадь боковой поверхности пирамиды:
Sбок = (1/2)А*Р = (1/2)*(а√3/2)*4а = а²√3.
Объём пирамиды V=(1/3)So*H = (1/3)*a²*( а/√2) =
= a³/3√2.
1. Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
2. Если сторона и два прилежащих угла одного треугольника равны соответствующей стороне и прилегающим углам другого треугольника, то такие треугольники равны.
3. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.
Отсюда, кстати, вытекают следствия для равенства прямоугольных треугольников.
1. Если два катета одного прямоугольного треугольника равны катетам другого треугольника то они равны.
2. Если катет и острый угол одного треугольника равны катету и острому углу другого треугольника, то они равны.
3. Если гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого треугольника то они равны.
4. Если катет и гипотенуза одного треугольника равны катету и гипотенузе другого треугольника то они равны.
5. Если гипотенуза одного равнобедренного треугольника равна гипотенузе другого равнобедренного треугольника, то они равны.
И т.д.