Углы одного треугольника относятся как 3: 5: 7, а во втором один из углов на 24 градуса больше второго и на 24 градуса меньше 3 угла. Докажите, что треугольники подобны. Пусть углы треугольника 3х, 5х, 7х. Тогда сумма углов треугольника 3х+5х+7х = 15х градусов, что равно 180° Составляем уравнение 15х = 180° ⇒ х=12° Значит углы треугольника 3х=3·12=36° 5х = 5·12 = 60° 7х = 7·12 = 84°
Один из углов второго треугольника на 24 ° больше второго угла, значит 60+24°= 84° и угол на 24° меньше третьего - угол в 60°=84°-24° Значит два угла второго треугольника 84° и 60°, а третий угол 180° - 84° - 60°= 36° углы второго треугольника 84°; 60° ; 36° Треугольники подобны по трём углам.
Пусть углы треугольника 3х, 5х, 7х.
Тогда сумма углов треугольника 3х+5х+7х = 15х градусов, что равно 180°
Составляем уравнение
15х = 180° ⇒ х=12°
Значит углы треугольника 3х=3·12=36° 5х = 5·12 = 60° 7х = 7·12 = 84°
Один из углов второго треугольника на 24 ° больше второго угла, значит 60+24°= 84°
и угол на 24° меньше третьего - угол в 60°=84°-24°
Значит два угла второго треугольника 84° и 60°, а третий угол 180° - 84° - 60°= 36°
углы второго треугольника 84°; 60° ; 36°
Треугольники подобны по трём углам.
ВК=BD*sin(BDA)
С другой стороны, AD = AC / 2 = BD / cos(BDA) => AC = 2 * BD / cos(BDA)
Площадь S треугольника АВС:
S = ВК*АС / 2 = ВК*АD = BD*sin(BDA) * BD / cos(BDA) = BD^2 * tg(BDA)
tg(BDA) = S / BD^2; 1 / cos(BDA) = корень (1 + tg^2(BDA)) = корень (1 + S^2 / BD^4)
Таким образом,
AC = 2 * BD / cos(BDA) = 2 * BD * корень (1 + S^2 / BD^4)
АС = 2 * 3 * корень (1 + 12^2 / 3^4) = 6 * корень (1 + 144 / 81) = 6 * корень (225 / 81) = 6 * 15 / 9 = 10.