Периметр треугольника равен сумме длин всех трех сторон, т. к. треугольник равносторонний, то каждая из сторон равна 6/3=2. Высота равностороннего прямоугольника делит его на два равных прямоугольных треугольника. Гипотенуза получившегося прямоугольного треугольника равна стороне исходного (равностороннего треугольника) =2. Один из катетов получившегося треугольника = высоте, другой=2/2.По теореме Пифагора находим неизвестный катет (высоту исходного треугольника) =корень квадратный из (2*2+1*1)=корень квадратный из (3).Высота равна корень квадратный из (3)
Рассмотрим равносторонний треугольник ABC со стороной а. Проведём высоту BH. Известно, что высота равностороннего треугольника делит сторону, на которую она опущена, пополам. Тогда AH=CH=a/2. Рассмотрим прямоугольный треугольник ABH. В нём гипотенуза AB равна a, а катет AH равен a/2. По теореме Пифагора найдём катет BH - BH=√a²-(a/2)²=√a²-a²/4=√3a²/4=√3a/2.
Площадь треугольника равна половине произведения стороны на проведённую к неё высоту. Таким образом, S=1/2*AC*BH=1/2*a*√3a/2=√3a²/4, что и требовалось доказать.
Другой решения: площадь треугольника равна 1/2*a*b*sinC, где sinC - синус угла между соседними сторонами a и b. Тогда S=1/2*a*a*sin60=1/2*a²*√3/2=√3a²/4.
Площадь треугольника равна половине произведения стороны на проведённую к неё высоту. Таким образом, S=1/2*AC*BH=1/2*a*√3a/2=√3a²/4, что и требовалось доказать.
Другой решения: площадь треугольника равна 1/2*a*b*sinC, где sinC - синус угла между соседними сторонами a и b. Тогда S=1/2*a*a*sin60=1/2*a²*√3/2=√3a²/4.
Если a=2√2, то S=√3*(2√2)²/4=√3*8/4=2√3.