Точка, взята на одній з граней двогранного кута, знаходиться від ребра на відстані в 2 рази більшій, ні від другої грані. Знайти величину двогранного кута до т А я вам до
Четырехугольник ABCD, К - середина АВ, L - середина ВС, M - середина CD, N - середина AD, Р - середина АС, Q - середина BD. Надо доказать, что КМ, LN и PQ пересекаются в одной точке.КN - средняя линяя в треугольнике ABD, поэтому KN II BD, KN = BD/2; точно также доказывается, что LM II BD, KL II AC, MN II AC. Поэтому KLMN - параллелограмм, в котором LN и KM - диагонали, поэтому в точке пересечения они делятся пополам, то есть КМ проходит через середину LN.С другой стороны,LQ - средняя линяя в треугольнике BCD, то есть LQ II CD, а PN - средняя линяя в треугольнике ACD, PN II CD, следовательно, PN II LQ.LP - средняя линяя в треугольнике ABC, то есть LP II AB, а QN - средняя линяя в треугольнике ABD, QN II AB, следовательно, QN II LP.Поэтому PLQN - параллелограмм, и его диагонали PQ и LN в точке пересечения делятся пополам.То есть PQ, так же как и КМ, проходит через середину LN.
1. сечение, проходящее через вершины B, B1, D - это диагональное сечение BDD1. Его площадь равна BD*BB1. Из прямоугольного треугольника ABD найдем BD: BD=17, тогда площадь сечения равна 17*21=357. 2. Диагональ правильной четырехугольной призмы BD1 наклонена к плоскости основания под углом 30, поэтому угол между диагональю призмы BD1 и диагональю основания B1D1 равен 30. Из полученного треугольника найдем диагональ призмы: 3. площадь боковой поверхности правильной шестиугольной призмы равна Р*Н: S=6*2*5=60. 4. Площадь основания равна 1/2*6*8= 24. Площадь боковой поверхности равна 288 - 2*24= 240. Площадь боковой поверхности равна Р*Н. Гипотенуза прямоугольного треугольника равна 10. Высота призмы равна 288/(6+8+10)=12.
2. Диагональ правильной четырехугольной призмы BD1 наклонена к плоскости основания под углом 30, поэтому угол между диагональю призмы BD1 и диагональю основания B1D1 равен 30. Из полученного треугольника найдем диагональ призмы:
3. площадь боковой поверхности правильной шестиугольной призмы равна Р*Н: S=6*2*5=60.
4. Площадь основания равна 1/2*6*8= 24. Площадь боковой поверхности равна 288 - 2*24= 240. Площадь боковой поверхности равна Р*Н.
Гипотенуза прямоугольного треугольника равна 10.
Высота призмы равна 288/(6+8+10)=12.