В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Aruzhankaaaaa1
Aruzhankaaaaa1
14.06.2022 02:00 •  Геометрия

Точке К (4;-7) относительно точки (0;0) симетрична точка с координатами (;)​

Показать ответ
Ответ:
Goshavasa
Goshavasa
12.02.2023 18:57
1. Треугольник BNC равносторонний, значит
∠NBC = 60°
∠ABN = 90° - ∠NBC = 30°

AB = BN, значит ΔABN равнобедренный, углы при основании равны:
∠BAN = ∠BNA = (180° - 30°)/2 = 75°

∠NAD = 90° - ∠BAN = 90° - 75° = 15°

2. ∠BAF = ∠DAF так как AF - биссектриса,
∠DAF = ∠BFA как накрест лежащие при пересечении AD║BC секущей AF, ⇒ ∠BAF = ∠BFA, треугольник BAF равнобедренный,
АВ = BF = 2 см

∠CFE =  ∠AFB как вертикальные
∠CEF = ∠BAF как накрест лежащие при пересечении AB║CD секущей АЕ,
∠AFB = ∠BAF как доказано выше, ⇒
∠CFE = ∠CEF, ⇒ треугольник CFE равнобедренный,
CF = CE = 3 см

АВ = 2 см
ВС = 2 + 3 = 5 см
Pabcd = (AB + BC)·2 = (2 + 5)·2 = 14 см

3. В треугольнике АВЕ АВ = 5 см, АЕ = 3 см, ВЕ = 4 см, значит это прямоугольный (египетский) треугольник, значит ВЕ - высота трапеции.
ЕВСК - прямоугольник (ВЕ = СК как высоты трапеции, ВЕ║СК как перпендикуляры к одной прямой), ⇒ ЕК = ВС = 6 см.

ВС = 6 см
AD = 3 + 6 + 1 = 10 см

Sabcd = (AD + BC)/2 · BE = (10 + 6)/2 · 4 = 32 см²

.(1.внутри квадрата abcd выбрана точка n так, что треугольник bnc равносторонний. найдите угол nad.
0,0(0 оценок)
Ответ:
Vicka2006
Vicka2006
15.01.2022 01:01

Любое уравнение первой степени, имеющее вид Ax+By+C=0, где А, В, С – некоторые действительные числа (А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид Ax+By+C=0 при некотором наборе значений А, В, С.

Объяснение:

Доказательство

указанная теорема состоит из двух пунктов, докажем каждый из них.

Докажем, что уравнение Ax+By+C=0 определяет на плоскости прямую.

Пусть существует некоторая точка М0(x0, y0), координаты которой отвечают уравнению Ax+By+C=0. Таким образом: Ax0+By0+C=0. Вычтем из левой и правой частей уравнений Ax+By+C=0 левую и правую части уравнения Ax0+By0+C=0, получим новое уравнение, имеющее вид A(x-x0)+B(y-y0)=0. Оно эквивалентно Ax+By+C=0.

Полученное уравнение A(x-x0)+B(y-y0)=0 является необходимым и достаточным условием перпендикулярности векторов

n

=(A, B) и

M0M

=(x-x0, y-y0). Таким образом, множество точек M(x, y) задает в

Справочник

Прямая, плоскость

Статью подготовили специалисты образовательного сервиса Zaochnik.

Как работает сервис

Наши социальные сети

Общее уравнение прямой: описание, примеры, решение задач

Содержание:

Общее уравнение прямой: основные сведения

Неполное уравнение общей прямой

Общее уравнение прямой, проходящей через заданную точку плоскости

Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно

Составление общего уравнения прямой

Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.

Общее уравнение прямой: основные сведения

Пусть на плоскости задана прямоугольная система координат Oxy.

Теорема 1

Любое уравнение первой степени, имеющее вид Ax+By+C=0, где А, В, С – некоторые действительные числа (А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид Ax+By+C=0 при некотором наборе значений А, В, С.

Доказательство

указанная теорема состоит из двух пунктов, докажем каждый из них.

Докажем, что уравнение Ax+By+C=0 определяет на плоскости прямую.

Пусть существует некоторая точка М0(x0, y0), координаты которой отвечают уравнению Ax+By+C=0. Таким образом: Ax0+By0+C=0. Вычтем из левой и правой частей уравнений Ax+By+C=0 левую и правую части уравнения Ax0+By0+C=0, получим новое уравнение, имеющее вид A(x-x0)+B(y-y0)=0. Оно эквивалентно Ax+By+C=0.

Полученное уравнение A(x-x0)+B(y-y0)=0 является необходимым и достаточным условием перпендикулярности векторов

n

=(A, B) и

M0M

=(x-x0, y-y0). Таким образом, множество точек M(x, y) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора

n

=(A, B). Можем предположить, что это не так, но тогда бы векторы

n

=(A, B) и

M0M

=(x-x0, y-y0) не являлись бы перпендикулярными, и равенство A(x-x0)+B(y-y0)=0 не было бы верным.

Общее уравнение прямой: основные сведения

Следовательно, уравнение A(x-x0)+B(y-y0)=0 определяет прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение

A

x

+

B

y

+

C

=

0

определяет ту же прямую. Так мы доказали первую часть теоремы.

Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени

A

x

+

B

y

+

C

=

0

.

Зададим в прямоугольной системе координат на плоскости прямую

a

; точку

M

0

(

x

0

,

y

0

)

, через которую проходит эта прямая, а также нормальный вектор этой прямой

n

=

(

A

,

B

)

.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота