2) Если периметр ромба равен 32 см, то сторона ромба равна 32 : 4 = 8 см. Высота ромба на 1,7 см меньше чем сторона значит H = 8 - 1, 7 = 6,3 см Площадь ромба равна произведению стороны ромба и его высоты, то есть S = 8 * 6,3 = 50,4 см²
3) Площадь паралелограмма равна произведению стороны на высоту проведённую к этой стороне. С одной стороны площадь параллелограмма равна S = 16 * 5,9 Но с другой стороны площадь этого параллелограмма можно вычислить и так S = 4 * h Приравняем правые части этих равенств 4 * h = 16 * 5,9 h = 4 * 5,9 = 23,6 см Дополнительный вопрос: ответ - НЕТ
4) Площадь параллелограмма будет равна произведению AD на BK S = AD * BK = 7 * 3 = 21 см²
2√13ед
Объяснение:
∆АЕВ- прямоугольный
АВ- гипотенуза
АЕ и ЕВ - катеты
по теореме Пифагора найдем
ЕВ=√(39²-36²)=√(1521-1296)=√225=15 ед
∆ЕСВ- прямоугольный
ЕС и СВ - катеты
ЕВ- гипотенуза
По теореме Пифагора найдем
ЕС=√(ЕВ²-СВ²)=√(15²-9²)=√(225-81)=
=√144=12 ед.
∆DFC - прямоугольный.
DC- гипотенуза
DF и FC- катеты.
По теореме Пифагора найдем
FC=√(DC²-DF²)=√(10²-6²)=√(100-36)=√64=8 ед
EF=EC-FC=12-8=4eд
∆EFD- прямоугольный треугольник
ЕD-гипотенуза
EF и FD катеты.
По теореме Пифагора найдем.
ED=√(DF²+EF²)=(6²+4²)=√(36+16)=√52=
=2√13 ед
ED=x
x=2√13 ед
Высота ромба на 1,7 см меньше чем сторона значит
H = 8 - 1, 7 = 6,3 см
Площадь ромба равна произведению стороны ромба и его высоты, то есть
S = 8 * 6,3 = 50,4 см²
3) Площадь паралелограмма равна произведению стороны на высоту проведённую к этой стороне.
С одной стороны площадь параллелограмма равна
S = 16 * 5,9
Но с другой стороны площадь этого параллелограмма можно вычислить и так
S = 4 * h
Приравняем правые части этих равенств
4 * h = 16 * 5,9
h = 4 * 5,9 = 23,6 см
Дополнительный вопрос: ответ - НЕТ
4) Площадь параллелограмма будет равна произведению AD на BK
S = AD * BK = 7 * 3 = 21 см²