Точки А(-2; -1), В(-2; -3), С(5; -2) являются вершинами параллелограмма АВСД. Найдите координаты вершины Д и координаты точки пересечения диагоналей. (7 б) Указание: Задачу оформить как положено. На чертеже указать координаты точек. Провести диагонали. Точку пересечения диагоналей обозначить буквой О. В решении сначала найдите координаты середины диагонали АС, затем координаты точки Д, используя формулы «Координаты середины отрезка»
ответ:расстояние от центра до вершины В равно 2.
Поэтому гипотенуза АВ=10 ( можно проверить по т. Пифагора)
Радиус вписанной в прямоугольный треугольник окружности найдем по формуле:
r=(а+b -с):2, где а и b катеты, с - гипотенуза
r=(8+6-10):2=2
Проведем радиусы к точкам касания.
ОМ⊥АС
ОМ =2
МС=2
АМ=8-2=6
Меньший угол треугольника АВС - угол А ( лежит против меньшей стороны)
В прямоугольном треугольнике АМО гипотенуза АО и есть искомое расстояние от центра окружности до вершины меньшего угла. . АО=√(36+4)=√40=2√10