1
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
angelikaliaka
08.12.2014
Геометрия
10 - 11 классы
+18 б.
ответ дан
сторона основания правильной четырехугольной пирамиды равна 6 см, высота - 4 см. Найти площадь полной поверхности.
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ, проверенный экспертом
4,0/5
7
Hrisula
главный мозг
7.5 тыс. ответов
16.7 млн пользователей, получивших
Обозначим пирамиду МАВСД.
Основание - квадрат со стороной 6 см. Высота МО=4 см.
МН- апофема ( высота боковой грани правильной пирамиды).
Площадь полной поверхности пирамиды - сумма площади основания и боковой поверхности.
S (бок)=0,5•Р•МН
Через основание высоты проведем КН║СВ.
КН⊥АВ. КН=ВС=6
ОН=КН:2=3
Из прямоугольного ∆ МОН по т.Пифагора
МН=5 см
S(бок)=0,5•4•6•5:2=60 см²
S(АВСД)=6²=36 см²
S(полн)=36+60=96 см²
В правильном тетраэдре все грани - равные равносторонние треугольники.
Площадь одной грани:
S₁ = a²√3/4 = 4²√3/4 = 4√3 см²
Так как К - середина DC, то АК = ВК - медианы и высоты равных треугольников DAC и DBC. Тогда
Sakd = Sbkd = 1/2 S₁ = 2√3 см² - это площади двух боковых граней пирамиды KABD.
Пусть Н - середина АВ, так как треугольник АКВ равнобедренный, то КН - его высота.
СН = DH = а√3/2 = 4√3/2 = 2√3 см как медианы и высоты равных равносторонних треугольников.
Тогда ΔDHC равнобедренный, КН - его медиана и высота:
КН⊥CD.
ΔСКН: ∠СКН = 90°, СН = 2√3 см, СК = CD/2 = 2 см, по теореме Пифагора
КН = √(CH² - CK²) = √((2√3)² - 2²) = √(12 - 4) = √8 = 2√2 см
Sabk = 1/2 AB · KH = 1/2 · 4 · 2√2 = 4√2 см²
Площадь боковой поверхности пирамиды KABD:
Sбок = Sakd + Sbkd + Sabk = 2√3 + 2√3 + 4√2 = 4(√3 + √2) см²
1
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
angelikaliaka
08.12.2014
Геометрия
10 - 11 классы
+18 б.
ответ дан
сторона основания правильной четырехугольной пирамиды равна 6 см, высота - 4 см. Найти площадь полной поверхности.
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ, проверенный экспертом
4,0/5
7
Hrisula
главный мозг
7.5 тыс. ответов
16.7 млн пользователей, получивших
Обозначим пирамиду МАВСД.
Основание - квадрат со стороной 6 см. Высота МО=4 см.
МН- апофема ( высота боковой грани правильной пирамиды).
Площадь полной поверхности пирамиды - сумма площади основания и боковой поверхности.
S (бок)=0,5•Р•МН
Через основание высоты проведем КН║СВ.
КН⊥АВ. КН=ВС=6
ОН=КН:2=3
Из прямоугольного ∆ МОН по т.Пифагора
МН=5 см
S(бок)=0,5•4•6•5:2=60 см²
S(АВСД)=6²=36 см²
S(полн)=36+60=96 см²
В правильном тетраэдре все грани - равные равносторонние треугольники.
Площадь одной грани:
S₁ = a²√3/4 = 4²√3/4 = 4√3 см²
Так как К - середина DC, то АК = ВК - медианы и высоты равных треугольников DAC и DBC. Тогда
Sakd = Sbkd = 1/2 S₁ = 2√3 см² - это площади двух боковых граней пирамиды KABD.
Пусть Н - середина АВ, так как треугольник АКВ равнобедренный, то КН - его высота.
СН = DH = а√3/2 = 4√3/2 = 2√3 см как медианы и высоты равных равносторонних треугольников.
Тогда ΔDHC равнобедренный, КН - его медиана и высота:
КН⊥CD.
ΔСКН: ∠СКН = 90°, СН = 2√3 см, СК = CD/2 = 2 см, по теореме Пифагора
КН = √(CH² - CK²) = √((2√3)² - 2²) = √(12 - 4) = √8 = 2√2 см
Sabk = 1/2 AB · KH = 1/2 · 4 · 2√2 = 4√2 см²
Площадь боковой поверхности пирамиды KABD:
Sбок = Sakd + Sbkd + Sabk = 2√3 + 2√3 + 4√2 = 4(√3 + √2) см²