У ромба все стороны равны, поэтому достаточно найти длину одной (любой) из сторон.
Диагонали ромба пересекаются под прямым углом и точкой пересечения делятся пополам, поэтому треугольник, образованный стороной ромба и двумя полудиагоналями, является прямоугольным.
Если обозначить длины диагоналей через a и b, то по теореме Пифагора длина стороны ромба равна с = √((a / 2)² + (b / 2)²).
1. a = 14 см, b = 8 см ⇒ c = √((14 / 2)² + (8 / 2)²) = √(7² + 4²) = √(49 + 16) = √65 см
2. a = 12 см, b = 6 см ⇒ c = √((12 / 2)² + (6 / 2)²) = √(6² + 3²) = √(36 + 9) = √45 = 3√5 см
Смотри объяснения.
Объяснение:
Найдем стороны данного четырехугольника:
|AB| = √((Xb-Xa)²+(Yb-Ya)²)) = √((-1)² + (4)²) = √17 ед.
|CD| = √((Xd-Xc)²+(Yd-Yc)²)) = √(1² + (-4)²) = √17 ед.
|BC| = √((Xc-Xb)²+(Yc-Yb)²)) = √((-4)² + (-1)²) = √17 ед.
|AD| = √((Xd-Xa)²+(Yd-Ya)²)) = √((-4)² + (-1)²) = √17 ед.
Так как противоположные стороны четырехугольника попарно равны, четырехугольник ABCD - параллелограмм.
Вектора перпендикулярны, если их скалярное произведение равно 0. Проверим это на векторах АВ и ВС:
(АВ·ВС) = Xab·Xbc + Yab·Ybc = (-1)·(-4) + 4·(-1) = 4-4 =0.
Таким образом, вектора (стороны параллелограмма) АВ и ВС перпендикулярны.
Параллелограмм, у которого угол между смежными сторонами равен 90°, является прямоугольником, а прямоугольник с равными сторонами является квадратом.
Что и требовалось доказать.
1. √65 см
2. 3√5 см
Объяснение:
У ромба все стороны равны, поэтому достаточно найти длину одной (любой) из сторон.
Диагонали ромба пересекаются под прямым углом и точкой пересечения делятся пополам, поэтому треугольник, образованный стороной ромба и двумя полудиагоналями, является прямоугольным.
Если обозначить длины диагоналей через a и b, то по теореме Пифагора длина стороны ромба равна с = √((a / 2)² + (b / 2)²).
1. a = 14 см, b = 8 см ⇒ c = √((14 / 2)² + (8 / 2)²) = √(7² + 4²) = √(49 + 16) = √65 см
2. a = 12 см, b = 6 см ⇒ c = √((12 / 2)² + (6 / 2)²) = √(6² + 3²) = √(36 + 9) = √45 = 3√5 см