Если катеты одного прямоугольного треугольника соответственно равны катетам другого,то такие треугольники равны. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого,то такие треугольники равны. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого,то такие треугольники равны.
1) Сечение - прямоугольник получается. его площадь = ав*вм, где м-середина ребра сс1)=4*вм, ищем вм по пифагору в тр всм, вм в2=16+4=20, вм=2корня из 5 все, 4*2корня из 5=8 корней из 5 2) Боковая грань, лежащая против угла 30 градусов равна длине диагонали основания 8 корень 2 см. Высота равна 4 корень 6 (боковая грань - гипотенуза 8 корень 2, половина диагонали основания - катет 4 корень 2, за пифагором найдена высота). Сторона основания пирамиды за пифагором равна 8 см, её площадь 64 см2. Площадь одной боковой поверхности равна 8 корень 2 * 8 корень 2 = 128 см2, четырёх поверхностей 128*4=512, общая 512+64=572 см2 3)
получается прямоугольный треугольник ACS, угол С прямой, АС=16, SC=20. Вот и найти надо угол А тангенс угла, отношение противолежащего катета к прилежащему. tgA=20/16
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны.
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого,то такие треугольники равны.
Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого,то такие треугольники равны.
Сечение - прямоугольник получается. его площадь = ав*вм, где м-середина ребра сс1)=4*вм,
ищем вм по пифагору в тр всм, вм в2=16+4=20, вм=2корня из 5
все, 4*2корня из 5=8 корней из 5
2)
Боковая грань, лежащая против угла 30 градусов равна длине диагонали основания 8 корень 2 см. Высота равна 4 корень 6 (боковая грань - гипотенуза 8 корень 2, половина диагонали основания - катет 4 корень 2, за пифагором найдена высота). Сторона основания пирамиды за пифагором равна 8 см, её площадь 64 см2. Площадь одной боковой поверхности равна 8 корень 2 * 8 корень 2 = 128 см2, четырёх поверхностей 128*4=512, общая 512+64=572 см2
3)
получается прямоугольный треугольник ACS, угол С прямой, АС=16, SC=20. Вот и найти надо угол А
тангенс угла, отношение противолежащего катета к прилежащему. tgA=20/16