Точки А и С лежат на одной прямой, точка В не лежит на этой прямой, но находится на одинаковых расстояниях от точек А и С. Величина угла Кое — 137. Определи: 1. вид треугольника ABC — 2. величину ХВ –
Раз периметр ромба равен 16 см, то каждая его сторона равна 16:4=4 см. Точкой пересечения диагоналей получаем прямоугольный треугольник, в котором гипотенузой является сторона ромба, равная 4 см, а также катет, равный половине данной длины нашей диагонали, т.е. один из катетов равен 3√4:2=6:2=3. По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7. Тут по таблице Брадиса я только примерно могу назвать градусную меру углов. Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов. Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус. Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам. Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360. ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.
если провести прямую с точки F в точку D то будет прямоугольный треугольник, и того с этого треугольника найдем ДФ с теоремы пифагора, нам известна сторона АФ = 4 и АД = 4 и ДФ = корень из АФ в квадрате + АД вквадрате = корень из 32
потом проведем източки Ф в точку С и найдем по тойже схеме по теореме пифагора а нам известно что БФ = 8 а БЦ = 4 и того корень кв из 8 в квадрате + 4 в квадрате = корень из 80.
таким образом мы нашли длины прых из точки Ф в точки Ц иД ФЦ = корень из 80, ЦД = корень из 32
По теореме Пифагора находим второй катет: 4^2-3^2=7. Второй катет равен √7.
Тут по таблице Брадиса я только примерно могу назвать градусную меру углов.
Возьмём синус угла, напротив которого лежит половина нашей диагонали. Он будет равен 3:4=0,75. Градусная мера угла(примерно!) равна 49 градусов.
Тогда градусная мера другого угла примерно будет равна 180-90-49=41 градус.
Т.к. проведённые диагонали ромба являются и биссектрисами его углов, то градусная мера двух углов будет равна 98-ми градусам(лежащим напротив друг друга), а градусная мера других двух углов будет равна 82 градусам.
Чтобы удостовериться, что данные расчёты в теории правильны, сложим эти углы(должно получиться 360 градусов)=82^2+98^2=360.
ответ:Градусная мера острых углов ромба равна 82-ум градусам, а тупых 98-ми.
если провести прямую с точки F в точку D то будет прямоугольный треугольник, и того с этого треугольника найдем ДФ с теоремы пифагора, нам известна сторона АФ = 4 и АД = 4 и ДФ = корень из АФ в квадрате + АД вквадрате = корень из 32
потом проведем източки Ф в точку С и найдем по тойже схеме по теореме пифагора а нам известно что БФ = 8 а БЦ = 4 и того корень кв из 8 в квадрате + 4 в квадрате = корень из 80.
таким образом мы нашли длины прых из точки Ф в точки Ц иД ФЦ = корень из 80, ЦД = корень из 32