Точки А, В и С лежат на одной прямой. Точки А лижит между точками В и С. АВ = х, ВС = 3,7. Найдите длину отрезка МК, где М середина отрезка АВ, К - середина отрезка АС
В задании фигура с указанными координатами неправильно названа - это параллелограмм. В любом случае диагональю фигуру разбить на 2 треугольника, Искомая площадь равна сумме двух треугольников. Треугольник АВС Точка А Точка В Точка С Ха Уа Хв Ув Хс Ус 2 -2 8 -4 8 8 Длины сторон: АВ ВС АС 6.32455532 12 11.66190379 Периметр Р = 29.98646, p = 1/2Р = 14.99323, Площадь определяем по формуле Герона: S = 36.
Треугольник АСД Точка А Точка С Точка Д Ха Уа Хс Ус Хд Уд 2 -2 8 8 2 10 АС СД АД 11.6619038 6.32455532 12 Периметр Р = 29.99, р = /2Р = 4.99 Площадь определяем по формуле Герона: S = 36. Итого площадь фигуры равна 36 + 36 = 72 кв.ед.
В любом случае диагональю фигуру разбить на 2 треугольника,
Искомая площадь равна сумме двух треугольников.
Треугольник АВС
Точка А Точка В Точка С
Ха Уа Хв Ув Хс Ус
2 -2 8 -4 8 8
Длины сторон:
АВ ВС АС
6.32455532 12 11.66190379
Периметр Р = 29.98646,
p = 1/2Р = 14.99323,
Площадь определяем по формуле Герона: S = 36.
Треугольник АСД
Точка А Точка С Точка Д
Ха Уа Хс Ус Хд Уд
2 -2 8 8 2 10
АС СД АД
11.6619038 6.32455532 12
Периметр Р = 29.99, р = /2Р = 4.99
Площадь определяем по формуле Герона: S = 36.
Итого площадь фигуры равна 36 + 36 = 72 кв.ед.
АС - ВD = 10см
Нехай ВD = х см, АС = 10 + х см
Діагоналі перетинаються під прямим кутом і діляться навпіл.
СО = ОА = (10 + х) / 2
ВО = ОD = х/2
Розглянемо трикутника ВСО:
O = 90градусів
за т. Піфагора:
ВС² = ВО² + СО²
25² = ((10 + х)/2)² + (х/2)²
625 = (100 + 20х + х²)/4 + х²/4
625 = (100 + 20х + 2х²) / 4
625 = (2 * (х² + 10х + 50)) / 4
625 = (х² + 10х + 50) / 2
1250 = х² + 10х + 50
х² + 10х - 1200 =0
Д = 70²
х1 = 30, х2 = -40
х2 = -40 -незадовільняє умову
Отже ВD = 30 см, АС = 30 + 10 = 40 см
S = 1/2 * АС * ВD = 1/2 * 30 * 40 = 600 см²