Точки а, в и середина м отрезка ав проектируются в точки а1, в1, м1. чему равна длина отрезка мм1, если аа1 = 3 см, вв1 = 7 см? 1) 5см 2) 4см 3) 2см 4) другой ответ.
Плоскость можно провести через две пересекающиеся прямые или через две параллельные прямые.
Через скрещивающиеся прямые плоскость провести нельзя.
1) Да, так как прямые АВ и BD₁ имеют общую точку В, значит пересекаются.
2) Да, так ВВ₁ и DD₁ параллельны (ВВ₁║СС₁ и СС₁║DD₁ как противоположные стороны квадрата, значит ВВ₁║DD₁).
3) Нет, так как прямые АА₁ и BD₁ скрещивающиеся (АА₁ лежит в плоскости (AA₁D₁), BD₁ пересекает эту плоскость в точке D₁, не лежащей на АА₁).
4) Да, так как A₁D║B₁C. Рассмотрим четырехугольник A₁B₁CD: А₁В₁║CD (А₁В₁║C₁D₁, а C₁D₁║CD как противолежащие стороны квадратов), и
А₁В₁ = CD как ребра куба.
Тогда A₁B₁CD - параллелограмм, ⇒ A₁D║B₁C.
5) Нет, так как прямые АD и B₁C скрещивающиеся (АD лежит в плоскости (ABC), B₁C пересекает эту плоскость в точке C, не лежащей на АD).
Плоскость BDD₁ проходит через точку B₁. Точка В принадлежит плоскости BDD₁ и прямая DD₁ лежит в этой плоскости, значит прямая, проходящая через В параллельно DD₁ лежит в этой плоскости.
Плоскость можно провести через две пересекающиеся прямые или через две параллельные прямые.
Через скрещивающиеся прямые плоскость провести нельзя.
1) Да, так как прямые АВ и BD₁ имеют общую точку В, значит пересекаются.
2) Да, так ВВ₁ и DD₁ параллельны (ВВ₁║СС₁ и СС₁║DD₁ как противоположные стороны квадрата, значит ВВ₁║DD₁).
3) Нет, так как прямые АА₁ и BD₁ скрещивающиеся (АА₁ лежит в плоскости (AA₁D₁), BD₁ пересекает эту плоскость в точке D₁, не лежащей на АА₁).
4) Да, так как A₁D║B₁C. Рассмотрим четырехугольник A₁B₁CD: А₁В₁║CD (А₁В₁║C₁D₁, а C₁D₁║CD как противолежащие стороны квадратов), и
А₁В₁ = CD как ребра куба.
Тогда A₁B₁CD - параллелограмм, ⇒ A₁D║B₁C.
5) Нет, так как прямые АD и B₁C скрещивающиеся (АD лежит в плоскости (ABC), B₁C пересекает эту плоскость в точке C, не лежащей на АD).
Плоскость BDD₁ проходит через точку B₁. Точка В принадлежит плоскости BDD₁ и прямая DD₁ лежит в этой плоскости, значит прямая, проходящая через В параллельно DD₁ лежит в этой плоскости.
Дано:
ABCD — прямоугольник,
AC ∩ BD=O,
∠AOD=φ.
Найти: ∠ACD.
Решение:
1) ∠DOC=180º-∠AOD=180º-φ (как смежные).
ugol mezhdu diagonalyami pryamougolnika raven
2) Треугольник COD — равнобедренный с основанием CD
(OC=OD по свойству диагоналей прямоугольника).
Тогда
\[\angle OCD = \frac180}^o} - \angle AOD}}{2} = \frac180}^o} - ({{180}^o} - \varphi )}}{2} = \]
\[ = \frac180}^o} - {{180}^o} + \varphi }}{2} = \frac{\varphi }{2}.\]
(как угол при основании равнобедренного треугольника).
\[\angle ACD = \angle OCD = \frac{\varphi }{2}.\]
ответ: φ/2.
ugol mezhdu diagonalyu i storonoy pryamougolnika
Около любого прямоугольника можно описать окружность. Центр описанной около прямоугольника окружности — точка пересечения его диагоналей.
∠ACD — вписанный угол, ∠AOD — соответствующий ему центральный угол. Следовательно,
∠ACD=½ ∠AOD=φ/2.
Задача 2. (обратная к задаче 1)
Угол между диагональю прямоугольника и его большей стороной равен α. Найти меньший угол между диагоналями прямоугольника.
ugol mezhdu diagonalyu i storonoy pryamougolnika
1) Треугольник COD — равнобедренный с основанием CD
(так как OC=OD по свойству диагоналей прямоугольника).
Угол при вершине равнобедренного треугольника
∠COD=180º-2∠OCD=180º-2α.
2) ∠AOD=180º-∠COD (как смежные),
∠AOD=180º-(180º-2α)=180º-180º+2α=2α.
ответ: 2α.
Вывод: острый угол между диагоналями прямоугольника в два раза больше угла между диагональю прямоугольника и его большей стороной.