Обьем пирамиды равен длина боковой грани умножить на длина боковой грани умножить на высота пирамиды и делить это все на 2. найдем высоту, т к угол между апофемой (высотой боковой грани) и основанием равен 45 градусов, то синус 45 градусов равен н/10 (где н - высота) н=((корень из 2)/2)*10=5 корней из 2 теперь найдем половину основания: тангенс 45 градусов=высота/х (где х - половина основания) (тангенс 45 градусов равен 1) х= (5 корней из 2)/1 значит основание будет равно (5 корней из 2)*2=10 корней из 2 теперь находим обьем пирамиды ((10 корней из 2)*(10 корней из 2)*(5 корней из 2))/2= 500 корней из 2 (кубических сантиметров) ответ: 500 корней из 2 (см³)
Медиана - это отрезок, соединяющий вершину с серединой противоположной стороны.
Треугольник АВС, АМ - медиана, ВМ = МС.
Найдем координаты точки М (х; у), середины отрезка.
х = (хв + хс ) / 2.
у = (ув - ус) / 2.
Где (хв; ув) - координата точки В, (хс; ус) - координата точки С.
В ( 5; 1), С (7; 9).
х = ( 5 + 7 ) / 2 = 12 / 2 = 6.
у = ( 1 + 9 ) / 2 = 10 / 2 = 5.
М (6; 5), А ( 2; - 3).
Найдем длину отрезка АМ.
АМ2 = (хм - ха)2 + (ум - уа)2.
Подставим значения координат.
АМ2 = (6 - 2)2 + (5 - ( - 3))2 = 42 + (5 + 3)2 = 16 + 64 = 80.
АМ = √80 = √(16 * 5) = √16 * √5 = 4√5.
ответ: АМ = 4√5.