Точки А, В, С принадлежат плоскости α, а точки К, L, М – плоскости β. α ІІ β, ВК ⟂ β, АL =4 см, СМ = 6 см, ВК = 3 см, ВМ = 5 см, АК = 7 см. Укажите расстояние между плоскостями α и β.
Если прямая (NK), не лежащая в плоскости (SAD), параллельна прямой, лежащей в плоскости (NK||SD), то прямая параллельна плоскости (NK||SAD).
Пусть плоскость MNK пересекает плоскость SAD по прямой ML.
Если плоскость (MNK) проходит через данную прямую (NK), параллельную другой плоскости (NK||SAD), то линия пересечения плоскостей параллельна данной прямой (ML||NK).
Тогда ML||NK||SD и ML - средняя линия в △SAD => ML=SD/2=NK
KLMN - параллелограмм (т.к. противоположные стороны параллельны и равны) => LK=MN
Смотри:
(x-a)²+(y-b)²=R, где a и b - это центр,т.е. точка А (к примеру) находится в центре и имеет координаты (а;b). R-это радиус.
То что я написала выше -это формула окружности.
Теперь давай решать.
1) (x-7)²+(y+2)²=25
В данном случае a(из формулы) -это 7, b (из формулы) - это -2.
-2 потому что в формуле b должно принимать отрицательное значение,а в этом уравнении оно положительно. Поэтому + умножить на - дает плюс.
ответ : центр: (7;-2) , радиус 5 см .
2)(x-4)²+y²= 1
Координата y равна 0.
ответ : центр : (4;0) ,радиус 1 см.
Если будут вопросы,обращайтесь.Удачи!
NK - средняя линия в △SCD => NK||SD, NK=SD/2
Если прямая (NK), не лежащая в плоскости (SAD), параллельна прямой, лежащей в плоскости (NK||SD), то прямая параллельна плоскости (NK||SAD).
Пусть плоскость MNK пересекает плоскость SAD по прямой ML.
Если плоскость (MNK) проходит через данную прямую (NK), параллельную другой плоскости (NK||SAD), то линия пересечения плоскостей параллельна данной прямой (ML||NK).
Тогда ML||NK||SD и ML - средняя линия в △SAD => ML=SD/2=NK
KLMN - параллелограмм (т.к. противоположные стороны параллельны и равны) => LK=MN
Из треугольника MNK по т Пифагора MN=12 =LK