Т.к. боковые ребра пирамиды равны, то и их проекции на основание тоже равны, следовательно, основание высоты пирамиды будет центр описанной около прямоугольного треугольника окружности)) известно: вписанный прямой угол опирается на диаметр, т.е. центр описанной около прямоугольного треугольника окружности --это середина гипотенузы. в основании египетский треугольник, т.е. гипотенуза =10 высота пирамиды --это высота боковой грани (треугольника со сторонами 13, 13, 10) h² = 13² - 5² = (13-5)(13+5) = 8*18 h = 4*3 = 12
Проведем биссектрису DE и отрезок EF, параллельно основанию AD. Тогда EF - средняя линия трапеции ABCD. Треугольник DEF равнобедренный, так как <EDA=<DEF (как внутренние накрест лежащие при параллельных EF и AD и секущей DE), а <FDE=<EDA (так как DE - биссектриса). Тогда EF=FD=39/2=19,5 Это средняя линия трапеции. Значит основание AD = 39 -12 = 27 (так как (AD+BC)/2=39, а ВС=12). Проведем высоты ВН и СК. Естественно, что ВН=ВК. Из треугольников АВН и КСD по Пифагору выразим ВН² и СК²: (1)ВК² = 36²-АН². (2)СК² = 39²-КD². Но KD=AD - AH - HK= 27-AH - 12 = 15-AН (так как НК=ВС). Значит СК² = 39²-(15-АН)². Приравняем оба выражения (1) и (2): 36²-АН² = 39² - 15² +30*АН -АН². 30*АН = 36²-39²+15²= 0 !! Следовательно, трапеция-то прямоугольная! (но это и не важно). Высота ее из (1) равна h = 36. Тогда площадь трапеции S = [(AD+BC)/2]*BH = 19,5*36 = 702.
известно: вписанный прямой угол опирается на диаметр, т.е. центр описанной около прямоугольного треугольника окружности --это середина гипотенузы.
в основании египетский треугольник, т.е. гипотенуза =10
высота пирамиды --это высота боковой грани (треугольника со сторонами 13, 13, 10)
h² = 13² - 5² = (13-5)(13+5) = 8*18
h = 4*3 = 12
Это средняя линия трапеции. Значит основание AD = 39 -12 = 27 (так как (AD+BC)/2=39, а ВС=12). Проведем высоты ВН и СК. Естественно, что ВН=ВК. Из треугольников АВН и КСD по Пифагору выразим ВН² и СК²:
(1)ВК² = 36²-АН². (2)СК² = 39²-КD². Но KD=AD - AH - HK= 27-AH - 12 = 15-AН (так как НК=ВС). Значит СК² = 39²-(15-АН)². Приравняем оба выражения (1) и (2):
36²-АН² = 39² - 15² +30*АН -АН². 30*АН = 36²-39²+15²= 0 !!
Следовательно, трапеция-то прямоугольная! (но это и не важно).
Высота ее из (1) равна h = 36.
Тогда площадь трапеции S = [(AD+BC)/2]*BH = 19,5*36 = 702.