Построение выполняется с циркуля и линейки . 1. Строим прямой угол. Рисуем прямую а (см.рисунок), на ней отмечаем точку О. Справа и слева от точки О на прямой а циркулем откладываем произвольные равные отрезки АО=ОВ. Из точки А радиусом АВ циркулем ппроводим вверх дугу.Из точки В радиусом АВ циркулем проводим вверх дугу. Точку пересечения двух последних дуг -точку С соедим с точкой О. Получили прямую b. Прямые a и b -перпендикулярны. 2.Строим катеты. Из точки О на прямой a вправо циркулем отложим отрезок ОD , равный первому катету. Из точки О на прямой b вверх циркулем отложим отрезок ОЕ, равнй второму катету. Соединим точки Е и D.Треугольник ОЕD построен
1. Строим прямой угол.
Рисуем прямую а (см.рисунок), на ней отмечаем точку О. Справа и слева от точки О на прямой а циркулем откладываем произвольные равные отрезки АО=ОВ. Из точки А радиусом АВ циркулем ппроводим вверх дугу.Из точки В радиусом АВ циркулем проводим вверх дугу. Точку пересечения двух последних дуг -точку С соедим с точкой О. Получили прямую b. Прямые a и b -перпендикулярны.
2.Строим катеты.
Из точки О на прямой a вправо циркулем отложим отрезок ОD , равный первому катету. Из точки О на прямой b вверх циркулем отложим отрезок ОЕ, равнй второму катету. Соединим точки Е и D.Треугольник ОЕD построен
В ∆ KDN отрезок DE - высота, а т.к. KЕ=EN, то и медиана.
Следовательно, ∆ KDN - равнобедренный, углы DKN=KND.
Угол NKD= углу MKD Поэтому угол МКN=2 угла N.
Сумма острых углов прямоугольного треугольника 90°.
3N=90° => Угол N=30°.
В прямоугольном ∆ DЕN проведем медиану ЕН.
По свойству медианы прямоугольного треугольника ЕН=DH=HN, треугольник ЕНN и треугольник DEH- равнобедренные. Угол HED=ЕDN=90°-30°=60°, ∆ DEH – равносторонний.
Точка D по свойству биссектрисы равноудалена от сторон КМ и КN.
МD=DE, а DE=DH=HN => MD=HN => MN=3MD. Доказано.