Точки а1, в1, с1 - середины ребер ра,рв,рс тетраедра равс. найти площу треугольника авс если площадь треугольника а1, в1, с1 = 16см в квадрате? , ! sos
пусть О - центр окружности пусть АВ = а пусть АР = в пусть AQ = c пусть АO = х пусть ОВ = ОР = ОQ = r пусть угол РАО = у
по теореме пифагора и по теореме косинусов выразим стороны трех треугольников с общей вершиной А и общей стороной АО получим 3 уравнения x² = a² + r² r²=x² + b²-2xb*cos(y) r²=x²+c²-2xc*cos(y)
R(радиус описанной окр) =авс/4Sтриугольника. То есть сначала найдем третью сторону триуг: по теор Пифагора: 144+81=225. это корень из 15 следовательно третья сторона равна 15 см. ищем Sтриугольника. S=0.5ab следовательно равно 0.5*12*9=54. теперь ищем радиус=9*12*15/4*54=7.5см. Теперь найдем радиус вписанной окружности : r=Sтр/p Ытриугольника уже известна. Найдем полупериметр: 12+15+9/2=18см. следовательно ищем радиус: 54/18=3 см. ответ : радиус описанной окр =7.5см, радиус вписанной окр = 3 см.
пусть О - центр окружности
пусть АВ = а
пусть АР = в
пусть AQ = c
пусть АO = х
пусть ОВ = ОР = ОQ = r
пусть угол РАО = у
по теореме пифагора и по теореме косинусов выразим стороны трех треугольников с общей вершиной А и общей стороной АО
получим 3 уравнения
x² = a² + r²
r²=x² + b²-2xb*cos(y)
r²=x²+c²-2xc*cos(y)
x² = a² + r²
r²=a² + r²+ b²-2xb*cos(y)
r²=a² + r²+c²-2xc*cos(y)
a² + b²=2xb*cos(y)
a² +c²=2xc*cos(y)
(a² + b²)*c=2xbc*cos(y)
(a² +c²)*b=2xbc*cos(y)
(a² +c²)*b=(a² + b²)*c
a²b +c²*b=a²c + b²*c
a²b - a²c = b²*c-c²*b
a²(b - c) = bc(b-c)
a² = bc
AB²= AP*AQ - что и требовалось доказать
R(радиус описанной окр) =авс/4Sтриугольника. То есть сначала найдем третью сторону триуг: по теор Пифагора: 144+81=225. это корень из 15 следовательно третья сторона равна 15 см. ищем Sтриугольника. S=0.5ab следовательно равно 0.5*12*9=54. теперь ищем радиус=9*12*15/4*54=7.5см. Теперь найдем радиус вписанной окружности : r=Sтр/p Ытриугольника уже известна. Найдем полупериметр: 12+15+9/2=18см. следовательно ищем радиус: 54/18=3 см. ответ : радиус описанной окр =7.5см, радиус вписанной окр = 3 см.