1. Формула для вычисления объема усеченной пирамиды:
V=(1/3)*h*(S1+S2+√(S1*S2)), где h - высота этой пирамиды, а S1 и S2 - площади ее оснований.
В нашем случае пирамида правильная, следовательно ее основания - квадраты. Диагонали этих квадратов даны 4√2см и 2√2см. Значит стороны квадратов равны соответственно 4см и 2см., а их площади равны 16 см² и 4 см².
Тогда V=(1/3)*6*(16+4+√(16*4)) = 2*28 = 56см³.
2. Определение: "Коэффициент подобия - это отношение расстояний между любыми двумя соответствующими парами точек при преобразовании подобия". Следовательно, это число равно отношению любых двух соответствующих линейных размеров подобных тел. У подобных пирамид основания подобны и их отношение равно квадрату коэффициента подобия. В нашем случае коэффициент подобия данных нам пирамид равен k=√(S1/S2). Или k=√(20/45)=√(4/9) = 2/3.
Так как основание призмы ромб с острым углом 60°, меньшая диагональ делит его на два равносторонних треугольника с равными углами при их основании ( меньшей диагонали). Поэтому высота призмы равна этой диагонали как сторона квадратного сечения, т.е. h=12 см. Объём призмы находят произведением площади основания на высоту ромба.
V=S•h.
Площадь параллелограмма равна произведению соседних сторон на синус угла между ними. Ромб - параллелограмм с равными сторонами. S=a²•sin60°=12²•√3/2=72√3 см² ⇒
1. Формула для вычисления объема усеченной пирамиды:
V=(1/3)*h*(S1+S2+√(S1*S2)), где h - высота этой пирамиды, а S1 и S2 - площади ее оснований.
В нашем случае пирамида правильная, следовательно ее основания - квадраты. Диагонали этих квадратов даны 4√2см и 2√2см. Значит стороны квадратов равны соответственно 4см и 2см., а их площади равны 16 см² и 4 см².
Тогда V=(1/3)*6*(16+4+√(16*4)) = 2*28 = 56см³.
2. Определение: "Коэффициент подобия - это отношение расстояний между любыми двумя соответствующими парами точек при преобразовании подобия". Следовательно, это число равно отношению любых двух соответствующих линейных размеров подобных тел. У подобных пирамид основания подобны и их отношение равно квадрату коэффициента подобия. В нашем случае коэффициент подобия данных нам пирамид равен k=√(S1/S2). Или k=√(20/45)=√(4/9) = 2/3.
Тогда отношение объемов этих пирамид равно k³ или
V1/V2 = 8/27.
ответ: 864√3 см³
Объяснение:
Так как основание призмы ромб с острым углом 60°, меньшая диагональ делит его на два равносторонних треугольника с равными углами при их основании ( меньшей диагонали). Поэтому высота призмы равна этой диагонали как сторона квадратного сечения, т.е. h=12 см. Объём призмы находят произведением площади основания на высоту ромба.
V=S•h.
Площадь параллелограмма равна произведению соседних сторон на синус угла между ними. Ромб - параллелограмм с равными сторонами. S=a²•sin60°=12²•√3/2=72√3 см² ⇒
V=72√3•12=864√3 см³