Точки K, M, P середин ребер AB AС AD тетраэдра DABC соответственно. а) доказать параллельность плоскостей PKM и DBC б) найти периметр PKM если DB=12, BC=8, DC=6
1.Тень от фонарного столба будет 4+8=12м, то есть в 12/4=3 раза больше, чем тень от дерева. Значит и высота столба будет в 3 раза больше дерева, то есть 3*3=9м.
2.Треугольник АВС - прямоугольный.
Докажем это с применением теоремы Пифагора:
41²=40²+9²
1681=1600+81
Значит, АС - гипотенуза.
В прямоугольном треугольнике центр окружности находится посередине гипотенузы, следовательно, радиус окружности равен 41:2=20,5 см.
ответ: 20,5 см
3.(картинка)
4.Опустим из вершины равнобедренного треугольника высоту, которая по известной теореме является медианой и биссектрисой. Тогда из получившихся прямоугольных треугольников найдем, что
sin(α/2) = (x/2)/b = x/(2b), где x - это длина искомого основания. Теперь выразим икс.
x = 2b*sin(α/2).
5.Опускаем перпендикуляр BD на сторону AC.
Проекция AB на AC - это AD= AB cos A; проекция BC на AC - это CD= BC cos C.(Картинка 2)Из теоремы синусов
1. Значения синуса, косинуса и тангенса на рисунке.
2. Тригонометрические тождества
sin²α + cos²α = 1 - основное тригометрическое тождество
tgα*ctgα = 1
формулы приведения:
sin(90-a)=cosa, cos(90-a)=sina - формулы приведения для острого угла
sin(180-a)=sina, cos(180-a)=cosa - формулы приведения для тупого угла
3. Теорема косинусов:
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
a²=b² + c² - 2bc cosα
4. Теорема синусов:
Стороны треугольника пропорциональны синусам противолежащих углов.
a/sinA = b/sinB = c/sinC
5. Расстояние между двумя точками:
Пусть А и B - две точки в плоскости. Их координаты соответственно равны A(x₁;y₁), B(x₂;y₂). Тогда расстояние между ними равно
AB = √(x₂-x₁)² + (y₂-y₁)² (корень из всего выражения)
6. Координаты середины отрезка:
Середина отрезка AB на плоскости с концами в точках A(Xa;Ya) и B(Xb;Yb) имеет координаты
AB = ( (Xa + Xb)/2 ; (Ya + Yb)/2)
7. Радиус описанной окружности вокруг треугольника находится по формуле:
R = abc/4S или R = a/2 sinα , где
R - радиус окружности,
a,b,c - стороны треугольника,
S - площадь треугольника,
α - угол, лежащий напротив стороны a
8. Формулы площади треугольника - (см. рисунок).
9. Формулы нахождения площади четырёхугольника:
Площадь прямоугольника:
S = ab
Площадь квадрата:
10. Правильный многоугоольник — это выпуклый четырёхугольник, у которого все стороны и углы равны.
11. Длину дуги окружности:
L = πrα/180⁰
Длину окружности с радиусом можно вычислить по формуле
L = 2πr
12. Прямоугольная система координат на плоскости (см. рисунок).
13. Уравнение окружности:
В прямоугольной системе координат уравнение окружности радиуса r с центром в точке C (x₀;y₀) имеет вид:
(x-x₀)² + (y-y₀)² = R²
14. Уравнение прямой:
имеет вид:
ax + by + c =0, ult
x, y - координаты точки;
a,b,c - некоторые числа.
С тебя синус,косинус и тангенс углов от 0 градус до 180 градусов . 2)тригонометрическое тождества. 4) тео">
1.Тень от фонарного столба будет 4+8=12м, то есть в 12/4=3 раза больше, чем тень от дерева. Значит и высота столба будет в 3 раза больше дерева, то есть 3*3=9м.
2.Треугольник АВС - прямоугольный.
Докажем это с применением теоремы Пифагора:
41²=40²+9²
1681=1600+81
Значит, АС - гипотенуза.
В прямоугольном треугольнике центр окружности находится посередине гипотенузы, следовательно, радиус окружности равен 41:2=20,5 см.
ответ: 20,5 см
3.(картинка)
4.Опустим из вершины равнобедренного треугольника высоту, которая по известной теореме является медианой и биссектрисой. Тогда из получившихся прямоугольных треугольников найдем, что
sin(α/2) = (x/2)/b = x/(2b), где x - это длина искомого основания. Теперь выразим икс.
x = 2b*sin(α/2).
5.Опускаем перпендикуляр BD на сторону AC.
Проекция AB на AC - это AD= AB cos A; проекция BC на AC - это CD= BC cos C.(Картинка 2)Из теоремы синусов
Объяснение: