1) так. Есть форума такая, мало кому известная. Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу. Звучит страшно, но это не так. Рисунок приложу. h=sqrt 2*8= 4 Теперь ищем площадь: S=1/2*h*c=1/2*4*10=20 sqrt-корень с-гипотенуза 2) Тангенс по определению отношение катетов. Там дробь, но она сокращена. По теореме Пифагора. Сумма квадратов катетов равна квадрату гипотенузы. Чтобы получилось 51^2 8 и 15 - мало 16 и 25 - мало 24 и 45 - как раз. 24^2+45^2=51^2 576+2025=2601 ответ: 24 и 45
1. Объем шара V=4/3π*r³. Объем конуса V=1/3SH. Так как угол при образующей конуса равен 60°, то его образующие вместе с диаметром основания составляют равносторонний треугольник. И раз так, по теореме Пифигора, квадрат радиуса основания конуса равен разности квадратов его диаметра (этому значению равна длинна его образующей) и высоты:
Площадь основания конуса будет π*r². Следовательно, объем конуса будет:
Так как диаметр шара равен высоте конуса, объем шара можно представить как: . Найдем теперь отношение объемов конуса и шара:
Следовательно, объем данного конуса составляет 2/3 объема данного шара. 2. Радиус описанной вокруг цилиндра сферы вычисляется по формуле:
Объем цилиндра равен площади его основания, умноженной на высоту. Отсюда высота цилиндра Н=96/48=2 см. Площадь основания равна π*r², отсюда: . Площадь сферы равна 4π*R². Подставляем в эту формулу уже найденные значения:
h=sqrt 2*8= 4
Теперь ищем площадь: S=1/2*h*c=1/2*4*10=20
sqrt-корень
с-гипотенуза
2) Тангенс по определению отношение катетов.
Там дробь, но она сокращена.
По теореме Пифагора.
Сумма квадратов катетов равна квадрату гипотенузы.
Чтобы получилось 51^2
8 и 15 - мало
16 и 25 - мало
24 и 45 - как раз.
24^2+45^2=51^2
576+2025=2601
ответ: 24 и 45
Так как угол при образующей конуса равен 60°, то его образующие вместе с диаметром основания составляют равносторонний треугольник. И раз так, по теореме Пифигора, квадрат радиуса основания конуса равен разности квадратов его диаметра (этому значению равна длинна его образующей) и высоты:
Площадь основания конуса будет π*r². Следовательно, объем конуса будет:
Так как диаметр шара равен высоте конуса, объем шара можно представить как:
.
Найдем теперь отношение объемов конуса и шара:
Следовательно, объем данного конуса составляет 2/3 объема данного шара.
2. Радиус описанной вокруг цилиндра сферы вычисляется по формуле:
Объем цилиндра равен площади его основания, умноженной на высоту. Отсюда высота цилиндра Н=96/48=2 см. Площадь основания равна π*r², отсюда:
.
Площадь сферы равна 4π*R². Подставляем в эту формулу уже найденные значения:
Площадь сферы будет равняться (192+4π) см².