Точки M и N делят окружность на две дуги, большая с которых ровняется 220 градусам, а меньшая точка А делится в отношении 5:2, если считать от точки М. Найдите угл NMA
. а) Сумма внутренних углов треугольника равна 180°. Значит третий угол треугольника равен 180°-70°--55°=55°. В треугольнике два угла равны, значит треугольник равнобедренный с основанием ВС, так как равные углы прилежат к стороне ВС.
б) Так как ВМ -перпендикуляр к АС, то треугольники АВМ и СВМ - прямоугольные. Сумма острых углов прямоугольного треугольника равна 90°, значит <АВМ=90°-70°=20°. <СВМ=90°-55°=35°.
2. а) Треугольники ВСО и ВСD равны по двум сторонам и углу между ними (АО=ОВ и СО=OD - дано, а <АОС =<BOD - вертикальные).
Что и требовалось доказать.
б) В равных треугольниках против равных сторон лежат равные углы. Следовательно, <ОАС=<OBD. Угол OBD=180°-20°-115°=45°.
Объяснение:
. а) Сумма внутренних углов треугольника равна 180°. Значит третий угол треугольника равен 180°-70°--55°=55°. В треугольнике два угла равны, значит треугольник равнобедренный с основанием ВС, так как равные углы прилежат к стороне ВС.
б) Так как ВМ -перпендикуляр к АС, то треугольники АВМ и СВМ - прямоугольные. Сумма острых углов прямоугольного треугольника равна 90°, значит <АВМ=90°-70°=20°. <СВМ=90°-55°=35°.
2. а) Треугольники ВСО и ВСD равны по двум сторонам и углу между ними (АО=ОВ и СО=OD - дано, а <АОС =<BOD - вертикальные).
Что и требовалось доказать.
б) В равных треугольниках против равных сторон лежат равные углы. Следовательно, <ОАС=<OBD. Угол OBD=180°-20°-115°=45°.
ответ: <ОАС=45°.
Подробнее - на -
Пусть дан прямоугольный треугольник, в котором известны гипотенуза с и радиус вписанной окружности r.
Примем один из катетов за х, второй равен √(с² - x²).
Точки касания окружности со сторонами отстоят:
- от вершины прямого угла на расстоянии r,
- на гипотенузе от вершины острого угла с катетом х на расстоянии
x - r.
- от второй вершины расстояние равно √(с² - x²) - r.
Длина гипотенузы равна: c = (x - r) + (√(с² - x²) - r).
√(с² - x²) = c - x + 2r. Возведём в квадрат:
с² - x² = c² + x² + 4r² - 2cx - 4rx + 4rc.
Получили квадратное уравнение:
x² - (c + 2r)*x +2(r² + rc) = 0, одиз из корней которого соотетствует длине принятого катета х, второй корень - это второй катет.
ответ: по корням уравнения x² - (c + 2r)*x +2(r² + rc) = 0 строятся катеты.
Сделаем проверку правильности формулы для известного "египетского" треугольника с катетами 3 и 4 и гипотенузой 5.
Для него r = (a+b-c)/2 = (3+4-5)/2 = 1.
Подставим в полученную формулу r = 1, c = 5.
x² - (5 + 2*1)*x +2(1² + 1*5) = 0.
x² -7x +12 = 0, D = 49 - 48 = 1,
x1 = (7 - 1)/2 = 3,
x2 = (7 + 1)/2 = 4.
ответ верный.