точки M K P и T делят окружность на дуги градусные меры которых пропорциональны числам 2 3 1 4 точки M к точке K Вычислите градусные меры углов четырехугольника мкпт и длину радиуса окружности если MP равно 14 KT 10
Призма - правильная четырехугольная. в основании её - квадрат. диагональ наклонена к плоскости основания под углом 45°. значит, диагональ квадрата - основания и высота призмы - катеты равнобедренного прямоугольного треугольника с гипотенузой - диагональю призмы. длина этой гипотенузы дана в условии - 4 см пусть х - катеты этого треугольника 4=х√2 х=4: √2=4√2: (√2*√2)=2√2 диагональ основания квадрата =2√2 высота призмы =2√2 основание цилиндра - круг, ограниченный вписанной в квадрат окружностью. радиус этой окружности равен половине стороны квадрата - основания призмы. найдем эту сторону из формулы диагонали квадрата: d=а√2 мы нашли d=2√2, значит сторона квадрата а=2 r= 2: 2=1 имеем цилиндр, высота которого по условию равна высоте призмы и равна 2√2, радиус основания цилиндра, найденный в процессе решения r =1 площадь боковой поверхности цилинда равна произведению длины окружности основания и высоты цилиндра. s =2πr*h= 2π*2√2 см²=4π√2 см²
Дан параллелограмм АВСD. Опустим высоту ВН к стороне AD, равной 8. Катет АН образовавшегося прямоугольного треугольника равен 3, так как лежит против угла 30° (острые углы в сумме равны 90°, а один из них равен 60° - дано). Второй катет равен ВН=√(6²-3²)=√27=3√3. Тогда в прямоугольном треугольнике BHD катет HD = AD-AH = 8-3=5, а гипотенуза BD равна по Пифагору: BD = √(BH²+HD²)=√(27+25)=2√13.
Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон. Найдем вторую диагональ.
BD²+AC² =2(AB²+BC²) или 52+АС² = 2*100 =200 => АС = √148 = 2√37. 2√37 > 2√13. AC > BD.
ответ: BD = 2√13 см.
А можно диагональ BD (она меньшая, так как в треугольниках АВС и ACD с равными двумя сторонами третья сторона BD лежит против острого угла, а AC - против тупого) найти по теореме косинусов из треугольника АBD: BD² = AB²+AD² - 2*AB*AD*Cos60 = 100-48 = 52.
Дан параллелограмм АВСD. Опустим высоту ВН к стороне AD, равной 8. Катет АН образовавшегося прямоугольного треугольника равен 3, так как лежит против угла 30° (острые углы в сумме равны 90°, а один из них равен 60° - дано). Второй катет равен ВН=√(6²-3²)=√27=3√3. Тогда в прямоугольном треугольнике BHD катет HD = AD-AH = 8-3=5, а гипотенуза BD равна по Пифагору: BD = √(BH²+HD²)=√(27+25)=2√13.
Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон. Найдем вторую диагональ.
BD²+AC² =2(AB²+BC²) или 52+АС² = 2*100 =200 => АС = √148 = 2√37. 2√37 > 2√13. AC > BD.
ответ: BD = 2√13 см.
А можно диагональ BD (она меньшая, так как в треугольниках АВС и ACD с равными двумя сторонами третья сторона BD лежит против острого угла, а AC - против тупого) найти по теореме косинусов из треугольника АBD: BD² = AB²+AD² - 2*AB*AD*Cos60 = 100-48 = 52.
BD = √52 = 2√13 см.