квадрат АВСД вписан в окружность с центром О - пересечение диагоналей, хорда МН, пересекает АВ в точке К, ВС в точке Р, треугольник АВС, КР-средняя линия треугольника=1/2АС, АС=2*радиус=диаметр=2*3=6, КР=6/2=3, проводим ОР и ОК., КВРО квадрат, КВ=ВР=РО=ОК=1/2 стороны квадрат, КР-диагональ в квадратеКВРО=3=ВО, О1 пересечение диагоналей КР и ВО, которые в точке пересечения О1 делятся пополам, ОО1=О1В=ВО/2=3/2=1,5=3/2, проводим радиусы ОМ и ОН, треугольник ОМН равнобедренный, ОМ=ОН=3, ОО1=высота=медиана, треугольник ОМО1 прямоугольный, О1М=корень(ОМ в квадрате-ОО1 в квадрате)=корень(9-9/4)=корень((36-9)/4)=3*корень3/2, МН-хорда=2*О1М=2*3*корень3/2=3*корень3
параллелограмм АВСД, АВ=СД, АД=ВС, проводим высоту ВК на СД, площадь АВСД=СД*ВК, М - произвольная точка (для построения - если считать точку О пересечение диагоналей то М по диагонали АС между А и О , ближе к О), через точку М проводим линию параллельную ВК, на АВ она пересекается в точке К, на продолжении СД в точке Т,
КМ-высота для треугольника АВМ, площадь треугольника АВМ=1/2*АВ(СД)*МК,
МТ-высота для треугольника СМД, площадь СМД=1/2*СД(АВ)*МТ, площадь АВМ+площадьСМД=1/2*СД*МК+1/2*СД*МТ=1/2СД*(МК+МТ), но МК+МТ=КТ, а КТ=ВК, тогда площадь АВМ+площадь СМД=1/2*СД*ВК, т.е=1/2 площади АВСД
параллелограмм АВСД, АВ=СД, АД=ВС, проводим высоту ВК на СД, площадь АВСД=СД*ВК, М - произвольная точка (для построения - если считать точку О пересечение диагоналей то М по диагонали АС между А и О , ближе к О), через точку М проводим линию параллельную ВК, на АВ она пересекается в точке К, на продолжении СД в точке Т,
КМ-высота для треугольника АВМ, площадь треугольника АВМ=1/2*АВ(СД)*МК,
МТ-высота для треугольника СМД, площадь СМД=1/2*СД(АВ)*МТ, площадь АВМ+площадьСМД=1/2*СД*МК+1/2*СД*МТ=1/2СД*(МК+МТ), но МК+МТ=КТ, а КТ=ВК, тогда площадь АВМ+площадь СМД=1/2*СД*ВК, т.е=1/2 площади АВСД