Точки P и T принадлежат соответственно ребрам АА1 и СС1 параллелепипеда ABCDA1B1C1D1, причём B1T||PD. Докажите, что четырёхугольник PB1TD - параллелограмм.
Пусть тропеция будет АВСD ,Где AD-большее основание ВС-меньшее основание ,уголАВС-тупой, ВД - его биссектриса, углы АВД=ДВС=у угол ВАД=180-2у (углы ВАД и АВС - односторонние при секущей АВ). Тогда в треугольнике АВД угол А равен 180-2у, АВД - у, а значит угол ВДА - тоже у (по сумме углов треугольника), и треугольник АВД - равнобедренный. Тогда АВ=АД Пусть АВ=АД=СД=х, тогда по условию 3х +3= 42 , х =13
Так как около любой равнобокой трапеции можно описать окружность, то ее площадь можно рассчитать по формуле Герона. Полупериметр р=21,S=SQR((21-8)^3 *(21-3))=96. sqr() - корень квадратный.
Пусть тропеция будет АВСD ,Где AD-большее основание ВС-меньшее основание ,уголАВС-тупой, ВД - его биссектриса, углы АВД=ДВС=у угол ВАД=180-2у (углы ВАД и АВС - односторонние при секущей АВ).
Тогда в треугольнике АВД угол А равен 180-2у, АВД - у, а значит угол ВДА - тоже у (по сумме углов треугольника), и треугольник АВД - равнобедренный. Тогда АВ=АД Пусть АВ=АД=СД=х, тогда по условию 3х +3= 42 , х =13
Так как около любой равнобокой трапеции можно описать окружность, то ее площадь можно рассчитать по формуле Герона.
Полупериметр р=21,S=SQR((21-8)^3 *(21-3))=96. sqr() - корень квадратный.
(х-х₀)²+(y-y₀)²=R² - уравнение окружности в общем виде
Окружность проходит через точки (6;0) и (0;8), следовательно,
х=6; y=8;
Центр окружности (x₀;y₀) лежит на оси Оу, следовательно,
x₀=0
Значит, уравнение окружности можно записать так:
(6-0)²+(0-y₀)²=R²
36+y₀²=R²
или так:
(0-0)²+(8-y₀)²=R²
64-16y+y₀²=R²
Т.к. это два уравнения одной и той же окружности, приравняем их левые части, получим:
36+y₀²=64-16y₀+y₀²
16y₀=64-36
16y₀=28
y₀=1,75
(0;1,75) - координаты центра окружности
Найдём квадрат радиуса окружности:
R²=(8-y₀)²
R²=(8-1,75)²
R²=6,25²
Теперь запишем уравнение окружности:
(х-0)²+(y-1,75)²=6,25²
x²+(y-1,75)²=30,0625
Объяснение:
Можно лучший? Я хочу умного