Около окружности радиуса 4√3 см описан правильный треугольник .На его высоте как на стороне построен правильный шестиугольник , в который вписана другая окружность. Найдите ее радиус.
Объяснение:
Обозначим радиус вписанной в треугольник окружности r₃=4√3 см. Найдем 1)сторону правильного треугольника ;2) и его высоту :
a₃ = 2r √3 , a₃ = 2*4√3*√3=24 (см). Тогда половина стороны 12 см.
По т. Пифагора высота правильного треугольника
h₃=√(24²-12²)=12√3 (см) ⇒ по условию это сторона правильного шестиугольника а=12√3 см.
Найдем радиус вписанной окружности в правильный шестиугольник
r=(а√3)/2 , r=( 12√3* √3)/2 =18 (см)
Примечание Высота в правильном треугольнике является медианой.
Дано:
∆АВС – равнобедренный с основанием АС;
АО и СМ – биссектрисы углов ВАС и ВСА соответственно.
Доказать: АО=СМ
Рассмотрим ∆АОС и ∆СМА.
АС – общая сторона;
Угол АСО=угол САМ, так как углы при основании равнобедренного треугольника равны. Следовательно 0,5*угол АСО=0,5*угол САМ.
Так как АО и СМ – биссектрисы по условию, то угол САО=0,5*САМ; угол АСМ=0,5*угол АСО.
Тогда угол САО=угол АСМ.
Следовательно из всех найденных равенств:
∆АОМ=∆СМА по двум углам и стороне между ними.
Следовательно АО=СМ как соответственные стороны равных треугольников.
Доказано.
Около окружности радиуса 4√3 см описан правильный треугольник .На его высоте как на стороне построен правильный шестиугольник , в который вписана другая окружность. Найдите ее радиус.
Объяснение:
Обозначим радиус вписанной в треугольник окружности r₃=4√3 см. Найдем 1)сторону правильного треугольника ;2) и его высоту :
a₃ = 2r √3 , a₃ = 2*4√3*√3=24 (см). Тогда половина стороны 12 см.
По т. Пифагора высота правильного треугольника
h₃=√(24²-12²)=12√3 (см) ⇒ по условию это сторона правильного шестиугольника а=12√3 см.
Найдем радиус вписанной окружности в правильный шестиугольник
r=(а√3)/2 , r=( 12√3* √3)/2 =18 (см)
Примечание Высота в правильном треугольнике является медианой.